3 resultados para factor analytic model
em Aquatic Commons
Resumo:
Quantifying scientific uncertainty when setting total allowable catch limits for fish stocks is a major challenge, but it is a requirement in the United States since changes to national fisheries legislation. Multiple sources of error are readily identifiable, including estimation error, model specification error, forecast error, and errors associated with the definition and estimation of reference points. Our focus here, however, is to quantify the influence of estimation error and model specification error on assessment outcomes. These are fundamental sources of uncertainty in developing scientific advice concerning appropriate catch levels and although a study of these two factors may not be inclusive, it is feasible with available information. For data-rich stock assessments conducted on the U.S. west coast we report approximate coefficients of variation in terminal biomass estimates from assessments based on inversion of the assessment of the model’s Hessian matrix (i.e., the asymptotic standard error). To summarize variation “among” stock assessments, as a proxy for model specification error, we characterize variation among multiple historical assessments of the same stock. Results indicate that for 17 groundfish and coastal pelagic species, the mean coefficient of variation of terminal biomass is 18%. In contrast, the coefficient of variation ascribable to model specification error (i.e., pooled among-assessment variation) is 37%. We show that if a precautionary probability of overfishing equal to 0.40 is adopted by managers, and only model specification error is considered, a 9% reduction in the overfishing catch level is indicated.
Resumo:
The time series of abundance indices for many groundfish populations, as determined from trawl surveys, are often imprecise and short, causing stock assessment estimates of abundance to be imprecise. To improve precision, prior probability distributions (priors) have been developed for parameters in stock assessment models by using meta-analysis, expert judgment on catchability, and empirically based modeling. This article presents a synthetic approach for formulating priors for rockfish trawl survey catchability (qgross). A multivariate prior for qgross for different surveys is formulated by using 1) a correction factor for bias in estimating fish density between trawlable and untrawlable areas, 2) expert judgment on trawl net catchability, 3) observations from trawl survey experiments, and 4) data on the fraction of population biomass in each of the areas surveyed. The method is illustrated by using bocaccio (Sebastes paucipinis) in British Columbia. Results indicate that expert judgment can be updated markedly by observing the catch-rate ratio from different trawl gears in the same areas. The marginal priors for qgross are consistent with empirical estimates obtained by fitting a stock assessment model to the survey data under a noninformative prior for qgross. Despite high prior uncertainty (prior coefficients of variation ≥0.8) and high prior correlation between qgross, the prior for qgross still enhances the precision of key stock assessment quantities.
Resumo:
The paper examines the factor intensity and economic returns of alternate shrimp-crop and shrimp-salt farming in the coastal areas of Bangladesh. Data were collected from 30 shrimp-crop and 30 shrimp-salt farmers, 30 shrimp farmers and 30 rice farmers from three selected coastal districts of Bangladesh. Cobb-Douglas production function model was used to determine the effect of various factors on alternate shrimp-crop farming. The chosen variables were stocking of juveniles, paddy seed, labour, fertilizers, feed and farm size of respective type of farming. The results indicated that the production function exhibited increasing remrns to scale for alternate shrimp-rice, alternate shrimp-salt and year round shrimp farming while it indicated decreasing returns for year round rice farming. Economic analysis of same system of farming indicated that higher amount of input use produced higher level of yield, gross return and net return for each type of production system.