15 resultados para executive functions
em Aquatic Commons
Resumo:
Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.
Resumo:
The author summarises observations on the behaviour of Polyphemus pediculus and functions of its extremities in the process of feeding. The crustacean Polyphemus pediculus seizes its prey, kills it and pulverises its food with the help of its extremities. Therefore for a study of its feeding method was necessary not only to have been acquainted in detail with the structure of its extremities, but also to have observed their interaction for the accomplishment of the stated functions.
Resumo:
Co-management is typically known to be a resource management system that shares managerial responsibility between the state and other stakeholders of a resource. In the case of Lake Victoria, one would expect the state to be represented by the fisheries departments of Kenya, Uganda and Tanzania, while stakeholder groups may comprise fishing communities, fish processing factories and municipalities. Taking that into account, the survey's objectives were defined as: (a) To identify the difficulties and impracticalities inherent in implementing state-based regulations via a "top-down" management strategy. (b) To assess the prevalence of community-based institutions that either seek to regulate the fishery or have the potential to be used to regulate it. (c) To identify ways in which community-based regulatory and monitory systems may be established, and how these will fare over time. (d) To identify roles for national Fisheries Departments, industrial fish processors and other stakeholders. (e) To develop well-founded policy suggestions for the establishment of a co-management framework to manage the fisheries of Lake Victoria.
Resumo:
From a special issue: A Brief History of the Charles Darwin Foundation for the Galapagos Islands 1959-1988
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission (IATTC) operates under the authority and direction of a Convention originally entered into by the governments of Costa Rica and the United States. The Convention, which came into force in 1950, is open to the adherence by other governments whose nationals participate in the fisheries for tropical tunas in the eastern Pacific Ocean. The member nations of the Commission now are t in addition to Costa Rica and the United States, Canada, France, Japan, Mexico, Nicaragua, and Panama.This report is a description of the organization, functions, and achievements of the Commission. It has been prepared to provide in a convenient format answers to requests for information concerning the Commission. It replaces a similar, earlier report (Carroz, 1965), which is now largely outdated. SPANISH: La Comisión Interamericana del Atún Tropical (CIAT) funciona bajo la autoridad y dirección de un Convenio firmado originalmente por los gobiernos de Costa Rica y los Estados Unidos de America. El Convenio, que entro en vigencia en 1950, se encuentra libre para que otros gobiernos cuyos ciudadanos participen en la pesca de atunes tropicales en el Océano Pacifico oriental se afilien a el. Las naciones miembros de la Comisión, además de Costa Rica y los Estados Unidos, son Cañada, Francia, Japón, México, Nicaragua y Panamá. Este informe es una descripción de la organización, funciones y resultados de la Comisión. Ha sido preparado para suministrar en forma conveniente respuestas a preguntas sobre la Comisión. Reemplaza un informe anterior similar (Carroz 1965), que ya es anticuado en su mayor parte.
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission (IATTC) operates under the authority and direction of a Convention originally entered into by the governments of Costa Rica and the United states. The Convention, which came into force in 1950, is open to the adherence by other governments whose nationals participate in the fisheries for tropical tunas in the eastern Pacific Ocean. The member nations of the Commission now are France. Japan, Nicaragua. Panama, and the United States. This report is a description of the organization, functions. and achievements of the Commission. It has been prepared to provide in a convenient format answers to requests for information concerning the Commission. It replaces similar, earlier reports (Carroz, 1965; Spec. Rep., 1), which are now largely outdated. SPANISH: La Comisión Interamericana del Atún Tropical (CIAT) funciona bajo la autoridad y dirección de un Convenio firmado originalmente por los gobiernos de Costa Rica y los Estados Unidos de America. El Convenio, Que entre en vigencia en 1950, se encuentra libre para Que otros gobiernos cuyos ciudadanos participan en la pesca de los atunes tropicales en el Océano Pacifico oriental se afilien a 61. Las naciones actuales que son miembros de la Comisión son: Francia, Japón, Nicaragua, Panamá y los Estados Unidos. Este informe es una descripci6n de la organización, funciones y resultados de la Comisión. Se ha preparado para suministrar en forma conveniente, informaci6n sobre la Comisión. Este informe renueva otros anteriores similares (Carroz, 1965; CIAT, Inf. Esp., 1) que en su mayor parte determinados.
Resumo:
This report is a description of the organization, functions, and achievements of the IATTC. It has been prepared to provide, in a convenient format, answers to requests for information concerning the IATTC. It replaces similar, earlier reports (Carroz, 1965; IATTC Spec. Rep., 1 and 5), which are now largely outdated. In order to make each section of the report independent of the others, some aspects of the IATTC are described in more than one section. For example, work on the early life history of tunas financed by the Overseas Fishery Cooperation Foundation of Japan is mentioned in the subsection entitled Finance, the subsection entitled Biology of tunas and billfishes, and the section entitled RELATIONS WITH OTHER ORGANIZATIONS. Due to space constraints, however, it is not possible to describe the IATTC's activities in detail in this report. Additional information is available in publications of the IATTC, listed in Appendix 6, and in its web site, www.iattc.org. Many abbreviations are used in this report. The names of the organizations or the terms are written out the first time they are used, and, for convenience, they are also listed in the Glossary.
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
This contribution illustrates how modern spreadsheets aid the calculation and visualization of yield models and how the effects of uncertainties may be incorporated using Monte Carlo simulation. It is argued that analogous approaches can be implemented for other assessment models of simple to medium complexity justifying wider use of spreadsheets in fisheries analysis and training.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution proxy records of climate, such as varves, ice cores, and tree-rings, provide the opportunity for reconstructing climate on a year-by-year basis. In order to do so it is necessary to approximate the complex nonlinear response function of the natural recording system using linear statistical models. Three problems with this approach were discussed, and possible solutions were suggested. Examples were given from a reconstruction of Santa Barbara precipitation based on tree-ring records from Santa Barbara County.
Resumo:
The US Fish and Wildlife Service Cape Romain National Wildlife Refuge (CRNWR) and the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) at Charleston are interested in assessing the status of our coastal resources in light of increased coastal development and recreational use. Through an Interagency Agreement (FWS #1448-40181-00-H-001), an ecological characterization was undertaken to describe the status of and potential impacts to resources at CRNWR. This report describes historic fisheries-independent or non-commercial data relevant to CRNWR that can be used to evaluate the role of the Refuge as habitat for nearshore and offshore fish species. The purpose of this document is two-fold, first to give resource managers an understanding of fisheries data that have been collected over the years and, second, to illustrate how these data can be applied to address specific management issues. This report provides an overview of historic fisheries data collected along the southeast coast, as well as basic summaries of that data relevant to CRNWR, indicating how these data can be used to address specific questions of interest to Refuge managers and biologists.
Resumo:
The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.
Resumo:
The growth of red sea urchins (Strongylocentrotus franciscanus) was modeled by using tag-recapture data from northern California. Red sea urchins (n=211) ranging in test diameter from 7 to 131 mm were examined for changes in size over one year. We used the function Jt+1 = Jt + f(Jt) to model growth, in which Jt is the jaw size (mm) at tagging, and Jt+1 is the jaw size one year later. The function f(Jt), represents one of six deterministic models: logistic dose response, Gaussian, Tanaka, Ricker, Richards, and von Bertalanffy with 3, 3, 3, 2, 3, and 2 minimization parameters, respectively. We found that three measures of goodness of fi t ranked the models similarly, in the order given. The results from these six models indicate that red sea urchins are slow growing animals (mean of 7.2 ±1.3 years to enter the fishery). We show that poor model selection or data from a limited range of urchin sizes (or both) produces erroneous growth parameter estimates and years-to-fishery estimates. Individual variation in growth dominated spatial variation at shallow and deep sites (F=0.246, n=199, P=0.62). We summarize the six models using a composite growth curve of jaw size, J, as a function of time, t: J = A(B – e–Ct) + Dt, in which each model is distinguished by the constants A, B, C, and D. We suggest that this composite model has the flexibility of the other six models and could be broadly applied. Given the robustness of our results regarding the number of years to enter the fishery, this information could be incorporated into future fishery management plans for red sea urchins in northern California.
Resumo:
The Transboundary Diagnosis Analysis(TDA) quantifies and ranks water-related environmental transboundary issues and their causes according to the severity of environmental and/or socio-economic impacts. The three main issues in BOBLME are; overexploitation of marine living resources; degradation of mangroves, coral reefs and seagrasses; pollution and water quality.