6 resultados para evolutionary arms race

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary associations among the four North American species of menhadens (Brevoortia spp.) have not been thoroughly investigated. In the present study, classifications separating the four species into small-scaled and large-scaled groups were evaluated by using DNA data, and genetic associations within these groups were explored. Specifically, data from the nuclear genome (microsatellites) and the mitochondrial genome (mtDNA sequences) were used to elicit patterns of recent and historical evolutionary associations. Nuclear DNA data indicated limited contemporary gene flow among the species, and also indicated higher relatedness within the small-scaled and large-scaled menhadens than between these groups. Mitochondrial DNA sequences of the large-scaled menhadens indicated the presence of two ancestral lineages, one of which contained members of both species. This result may indicate genetic diver-gence (reproductive isolation) followed by secondary contact (hybridization) between these species. In contrast, a single ancestral lineage indicated incomplete genetic divergence between the small-scaled menhaden. These results are discussed in the context of the biology and demographics of each species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystem-based management is one of many indispensable components of objective, holistic management of human impacts on nonhuman systems. By itself, however, ecosystem-based management carries the same risks we face with other forms of current management; holism requires more. Combining single-species and ecosystem approaches represents progress. However, it is now recognized that management also needs to be evosystem-based. In other words, management needs to account for all coevolutionary and evolutionary interactions among all species; otherwise we fall far short of holism. Fully holistic practices are quite distinct from the approaches to the management of fisheries that are applied today. In this paper, we show how macroecological patterns can guide management consistently, objectively, and holistically. We present one particular macroecological pattern with two applications. The first application is a case study of fisheries from the Baltic Sea involving historical data for two species; the second involves a sample of 44 species of primarily marine fish worldwide. In both cases we evaluate historical fishing rates and determine holistic/systemic sustainable single-species fishing rates to illustrate that conventional fisheries management leads to much more extensive and pervasive overfishing than currently realized; harvests are, on average, over twenty-fold too large to be fully sustainable. In general, our approach involves not only the sustainability of fisheries and related resources but also the sustainability of the ecosystems and evosystems in which they occur. Using macroecological patterns accomplishes four important goals: 1) Macroecology becomes one of the interdisciplinary components of management. 2) Sustainability becomes an option for harvests from populations of individual species, species groups, ecosystems, and the entire marine environment. 3) Policies and goals are reality-based, holistic, or fully systemic; they account for ecological as well as evolutionary factors and dynamics (including management itself). 4) Numerous management questions can be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.