9 resultados para errors-in-variables model

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In April 2005, a SHOALS 1000T LIDAR system was used as an efficient alternative for safely acquiring data to describe the existing conditions of nearshore bathymetry and the intertidal zone over an approximately 40.7 km2 (11.8 nm2) portion of hazardous coastline within the Olympic Coast National Marine Sanctuary (OCNMS). Data were logged from 1,593 km (860 nm) of track lines in just over 21 hours of flight time. Several islands and offshore rocks were also surveyed, and over 24,000 geo-referenced digital still photos were captured to assist with data cleaning and QA/QC. The 1 kHz bathymetry laser obtained a maximum water depth of 22.2 meters. Floating kelp beds, breaking surf lines and turbid water were all challenges to the survey. Although sea state was favorable for this time of the year, recent heavy rainfall and a persistent low-lying layer of fog reduced acquisition productivity. The existence of a completed VDatum model covering this same geographic region permitted the LIDAR data to be vertically transformed and merged with existing shallow water multibeam data and referenced to the mean lower low water (MLLW) tidal datum. Analysis of a multibeam bathymetry-LIDAR difference surface containing over 44,000 samples indicated surface deviations from –24.3 to 8.48 meters, with a mean difference of –0.967 meters, and standard deviation of 1.762 meters. Errors in data cleaning and false detections due to interference from surf, kelp, and turbidity likely account for the larger surface separations, while the remaining general surface difference trend could partially be attributed to a more dense data set, and shoal-biased cleaning, binning and gridding associated with the multibeam data for maintaining conservative least depths important for charting dangers to navigation. (PDF contains 27 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

English: Recent calls for a more holistic approach to fisheries management have motivated development of trophic mass-balance models of ecosystems that underlie fisheries production. We developed a model hypothesis of the pelagic ecosystem in the eastern tropical Pacific Ocean (ETP) to gain insight into the relationships among the various species in the system and to explore the ecological implications of alternative methods of harvesting tunas. We represented the biomasses of and fluxes between the principal elements in the ecosystem with Ecopath, and examined the ecosystem's dynamic, time-series behavior with Ecosim. We parameterized the model for 38 species or groups of species, and described the sources, justifications, assumptions, and revisions of our estimates of the various parameters, diet relations, fisheries landings, and fisheries discards in the model. We conducted sensitivity analyses with an intermediate version of the model, for both the Ecopath mass-balance and the dynamic trajectories predicted by Ecosim. The analysis showed that changes in the basic parameters for two components at middle trophic levels, Cephalopods and Auxis spp., exert the greatest influence on the system. When the Cephalopod Q/B and Auxis spp. P/B were altered from their initial values and the model was rebalanced, the trends of the biomass trajectories predicted by Ecosim were not sensitive, but the scaling was sensitive for several components. We described the review process the model was subjected to, which included reviews by the IATTC Purse-seine Bycatch Working Group and by a working group supported by the National Center for Ecological Analysis and Synthesis. We fitted the model to historical time series of catches per unit of effort and mortality rates for yellowfin and bigeye tunas in simulations that incorporated historical fishing effort and a climate driver to represent the effect of El Niño-Southern Oscillation-scale variation on the system. The model was designed to evaluate the possible ecological implications of fishing for tunas in various ways. We recognize that a model cannot possibly represent all the complexity of a pelagic ocean ecosystem, but we believe that the ETP model provides insight into the structure and function of the pelagic ETP. Spanish: Llamamientos recientes hacia un enfoque más holístico al ordenamiento de la pesca han motivado el desarrollo de modelos tróficos de balance de masas de los ecosistemas que sostienen la producción pesquera. Desarrollamos una hipótesis modelo del ecosistema pelágico en el Océano Pacífico oriental tropical (POT) con miras a mejorar los conocimientos de las relaciones entre las distintas especies en el sistema y explorar las implicaciones ecológicas de métodos alternativos de capturar atunes. Con Ecopath representamos las biomasas de los elementos principales en el ecosistema, y los flujos entre los mismos, y con Ecosim examinamos el comportamiento dinámico del ecosistema con el tiempo. Parametrizamos el modelo para 38 especies o grupos de especies (denominados “componentes” del modelo), y describimos las fuentes, justificaciones, supuestos, y revisiones de nuestras estimaciones de los distintos parámetros, relaciones basadas en dieta, capturas retenidas de las pesquerías, y descartes de las mismas en el modelo. Realizamos análisis de sensibilidad con una versión intermedia del modelo, para el balance de masas de Ecopath y las trayectorias dinámicas predichas por Ecosim también. El análisis demostró que cambios en los parámetros básicos para dos componentes en niveles tróficos medianos, Cefalópodos y Auxis spp., ejercieron la mayor influencia sobre el sistema. Cuando se alteraron el Q/B de los Cefalópodos y el P/B de los Auxis spp. de sus valores iniciales y se balanceó el modelo de nuevo, las tendencias de las trayectorias de la biomasa predichas por Ecosim no fueron sensibles, pero la escala fue sensible para varios componentes. Describimos el proceso de revisión al que fue sujeto el modelo, inclusive revisiones por el Grupo de Trabajo sobre Captura Incidental de la CIAT y un grupo de trabajo apoyado por el Centro Nacional para Síntesis y Análisis Ecológicos. Ajustamos el modelo a series de tiempo históricas de capturas por unidad de esfuerzo y tasas de mortalidad de atunes aleta amarilla y patudo en simulaciones que incorporaron esfuerzo de pesca histórico e impulsos climáticos para representar el efecto de variaciones a escala de El Niño-Oscilación del Sur sobre el sistema. El modelo fue diseñado para evaluar las posibles implicaciones ecológicas de la pesca atunera de varias formas. Reconocemos la imposibilidad de que el modelo represente toda la complejidad de un ecosistema oceánico pelágico, pero creemos que el modelo del POT mejora los conocimientos de la estructura y función del POT pelágico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Errors in growth estimates can affect drastically the spawner-perrecruit threshold used to recommend quotas for commercial fish catches. Growth parameters for sablefish (Anoplopoma fimbria) in Alaska have not been updated for stock assessment purposes for more than 20 years, although aging of sablefish has continued. In this study, length-stratified data (1981–93 data from the annual longline survey conducted cooperatively by the Fisheries Agency of Japan and the Alaska Fisheries Science Center of the National Marine Fisheries Service) were updated and corrected for discovered sampling bias. In addition, more recent, randomly collected samples (1996–2004 data from the annual longline survey conducted by the Alaska Fisheries Science Center) were analyzed and new length-at-age and weight-at-age parameters were estimated. Results were similar between this analysis with length-at-age data from 1981 to 2004 and analysis with updated longline survey data through 2010; therefore, we used our initial results from analysis done with data through 2004. We found that, because of a stratified sampling scheme, growth estimates of sablefish were overestimated with the older data (1981–93), and growth parameters used in the Alaskan sablefish assessment model were, thus, too large. In addition, a comparison of the bias-corrected 1981–93 data and the 1996–2004 data showed that, in more recent years, sablefish grew larger and growth differed among regions. The updated growth information improves the fit of the data to the sablefish stock assessment model with biologically reasonable results. These findings indicate that when the updated growth data (1996–2004) are used in the existing sablefish assessment model, estimates of fishing mortality increase slightly and estimates of female spawning biomass decrease slightly. This study provides evidence of the importance of periodically revisiting biological parameter estimates, especially as data accumulate, because the addition of more recent data often will be more biologically realistic. In addition, it exemplifies the importance of correcting biases from sampling that may contribute to erroneous parameter estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fecundity in striped mullet (Mugil cephalus) from South Carolina correlated highly with length and weight, but not with age. Oocyte counts ranged from 4.47 × 105 to 2.52 × 106 in 1998 for fish ranging in size from 331 mm to 600 mm total length, 2.13 × 105to 3.89 × 106in 1999 for fish ranging in size from 332 mm to 588 mm total length, and 3.89 × 105 to 3.01 × 106 in 2000 for fish ranging in size from 325 mm to 592 mm total length. The striped mullet in this study had a high degree of variability in the size-at-age relation-ship; this variability was indicative of varied growth rates and compounded the errors in estimating fecundity at age. The stronger relationship of fecundity to fish size allowed a much better predictive model for potential fecundity in striped mullet. By comparing fecundity with other measures of reproductive activity, such as the gonadosomatic index, histological examination, and the measurement of mean oocyte diameters, we determined that none of these methods by themselves were adequate to determine the extent of reproductive development. Histological examinations and oocyte diameter measurements revealed that fecundity counts could be made once developing oocytes reached 0.400 μm or larger. Striped mullet are isochronal spawners; therefore fecundity estimates for this species are easier to determine because oocytes develop at approximately the same rate upon reaching 400 μm. This uniform development made oocytes that were to be spawned easier to count. When fecundity counts were used in conjunction with histological examination, oocyte diameter measurements, and gonadosomatic index, a more complete measure of reproductive potential and the timing of the spawning season was possible. In addition, it was determined that striped mullet that recruit into South Carolina estuaries spawn from October through April.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of venomous species of Persian Gulf cone snails and characterization of venom composition and their features is so important from the point of medical importance. Marine cone snails from the genus Conus are estimated to consist of up to 700 species. The venom of cone snails has yielded a rich source of novel neuroactive peptides or conotoxins. The present study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. The specimens of Conus textile were collected of Larak Island from depth of 7 m. The collected samples were transferred to laboratory alive and were stored at -700 c. he veno s ducts were separated and ho ogenized with deionized water he ixture centrifuged at rp for inutes upernatant was considered as extracted veno and stored at - C after lyophylization. The protein profile of venom determined by using SDS-PAGE and HPLC used to investigate the extracted venom and to evaluate the analgesic activity, formalin test was carried out. SDS-PAGE indicated several bands ranged between 6 and 250 kDa. Chromatogram of the venom demonstrated more than 44 large and small fractions. The amount of 10 ng of Conus crude venom and analgesic peptide showed the best anti-pain activity in formalin test. No death observed up to 100 mg/kg, which is 250,000 times higher than the effective dose.Venom characterization of Persian Gulf Conus textile may be of medical importance and potential for new pharmaceutical drugs as well.