2 resultados para energy demand
em Aquatic Commons
Resumo:
Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.
Resumo:
Increases in fish demand in the coming decades are projected to be largely met by growth of aquaculture. However, increased aquaculture production is linked to higher demand for natural resources and energy as well as emissions to the environment. This paper explores the use of Life Cycle Assessment to improve knowledge of potential environmental impacts of future aquaculture growth. Different scenarios of future aquaculture development are taken into account in calculating the life cycle environmental impacts. The environmental impact assessments were built on Food and Agriculture Organization statistics in terms of production volume of different species, whereas the inputs and outputs associated with aquaculture production systems were sourced from the literature. The matrix of input-output databases was established through the Blue Frontiers study.