21 resultados para embryo’s ability to live
em Aquatic Commons
Resumo:
The abundance and distribution of ichthyoplankton adjacent to live-bottom habitats (rock outcroppings containing rich, sessile invertebrate communities and many species of tropical and subtropical fishes) in open-shelf waters « 55-m isobath) in Onslow Bay, North Carolina, were investigated. Larvae of reef-associated genera, especially the economically important subtropical and tropical members of the families Haemulidae (Haemulon), Lutjanidae (Lutjanus and Rltomboplites), Serranidae (Mycteroperca and Epinephelus), and Sparidae (Calamus and Pagrus) were targeted. Larvae representing 40 families were collected in neuston tows. Commonly collected reef-associated families were Balistidae, Blenniidae (dominated by the reef-associated Parablennius marmoreus) , Mullidae, and Gobiidae. Larvae representing 70 families were collected in subsurface tows. Reef-associated families commonly collected included Apogonidae, Balistidae, Gobiidae, Haemulidae, LutJanidae, Scaridae, and Serranidae. Larval Haemulon sp (p)., Lutjanus sp(p)., and Rltomboplites aurorubens were commonly collected and thus it is likely that these taxa spawn in Onslow Bay and recruit to live-bottom sites within the area. Other families of fishes commonly collected but generally not considered reef-associated included Bothidae, Callionymidae, Carangidae, Clupeidae, Engraulidae, and Ophidiidae. Estuarine-dependent species (e.g. the clupeid Brevoortia tyrannus and the sciaenids Leiostomus xanthurus and Micropogonias undulatus) were an important component of the ichthyoplankton during late fall and winter. The frequent occurrence of larvae from oceanic species (e.g. gonostomatids and myctophids) indicated that Gulf Stream waters had intruded onto the shelf, transporting these larvae to open-shelf waters off North Carolina.(PDF file containes 36 pages.)
Resumo:
Shell dimensions (length, height, width) and shell volume were evaluated as estimators of growth for Polymesoda erosa in northern Australia. Each parameter was a good estimator when applied to live weight (r2 values of 76-96 percent), but not to soft tissue weight (wet, dry, or ash-free dry weight) (r2 values of 13-32 percent). The b value for shell volume to weight relationship of clams collected during the dry season (June to October) was signifi cantly different than for those collected in the wet season (February to April).
Resumo:
The temperature of water in a river system affects fish in various ways; it has an influence on feeding habits, movement and metabolism. All fish vary in their ability to tolerate fluctuations in temperature, but those that live in a reasonably stable environment are more sensitive to major changes (tropical fish) than are salmon which can tolerate abrupt changes. The body temperature of the majority of fish differs from that of the surrounding water by only 0.5 to 1.0 degrees, and changes in temperature can, in many cases, be a signalling factor for some process, for example spawning, migration or feeding. It has been found, after monitoring the activity in 2,623 salmon in the River Lune, that they live in a water temperature of 0-17 degrees. Whilst salmon ova can develop in a temperature range of 0-12 degrees, spawning takes place within a much closer range, and these tolerances will be found in the Report. This report offers data and analysis of fish movement correlated to water temperature for the years 1964/65.
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
One third of the people on earth who are described as living in absolute poverty are found today in India. “These people,” says Mr B K Satpathy, “are caught in a poverty trap’.” “Poverty trap?” we ask. “These are creative weavers; their cloth has a distinctive style, but those who supply their thread also take away and sell the cloth, paying just a small labor cost for each saree. If they are skilled and work hard this amounts to only 25-30 rupees (60-70 US cents) per day.” Under this arrangement, weaving does not provide enough to live on, and people are seeking ways to escape their entrapment in poverty. (Pdf contains 6 pages).
Resumo:
Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.)
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Aquaculture production in Nigeria has increased tremendously in recent times; along with this increase is the rise in the level of waste outputs from aquaculture practices. The discharge of waste from aquaculture operations on continuous basis leads to eutrophication and destruction of natural ecosystem in receiving water body. Controlled wastes production strategies is necessary to maintain sustainable aquaculture growth into the future, as long-term sustainability of fish culture systems depends on their ability to reduce their waste outputs. The release of solid wastes is mainly a function of the digestibility of various dietary components while the release of dissolved wastes is mainly a function of the metabolism of nutrients by the fish. This paper critically reviews the impacts of aquaculture wastes on the environment and the strategies to mitigate the effect of these impacts. Future trends and research needs on aquaculture induced effluents are outlined. As the amount of nutrient discharge is typically site and operation specific, effective farm management has been identified as the most important factor to avoid effluent pollution.
Resumo:
Identifying the spatial and temporal patterns of larval fish supply and settlement is a key step in understanding the connectivity of meta-populations (Sale et al., 2005). Because of the potentially dispersive nature of the pelagic larval phase of most reef fishes, tracking cohorts from hatching to settlement is extremely difficult (but see Jones et al., 1999). However, for many studies it is sufficient to sample larvae immediately before settlement. Many coral reef fish species use mangrove and seagrass beds as nursery habitats (Nagelkerken et al., 2001; Mumby et al., 2004) and larvae of these species must pass over the reef crest in order to arrive at their preferred settlement habitats. The ability to sample this new cohort of larval fishes provides opportunities for researchers to explore the intricacies of the transition from larva to juvenile (Searcy and Sponaugle, 2001). Quantifying the potential settlers also provides valuable information about the spatial and temporal supply of presettlement larvae (Victor, 1986). Therefore a number of larval sampling methods were developed, one of which is the use of crest nets (Dufour and Galzin, 1993).
Resumo:
Rockfish (Sebastes spp.) biomass is difficult to assess with standard bottom trawl or acoustic surveys because of their propensity to aggregate near the seafloor in highrelief areas that are inaccessible to sampling by trawling. We compared the ability of a remotely operated vehicle (ROV), a modified bottom trawl, and a stereo drop camera system (SDC) to identify rockfish species and estimate their size composition. The ability to discriminate species was highest for the bottom trawl and lowest for the SDC. Mean lengths and size distributions varied among the gear types, although a larger number of length measurements could be collected with the bottom trawl and SDC than with the ROV. Dusky (S. variabilis), harlequin (S. variegatus), and northern rockfish (S. polyspinis), and Pacific ocean perch (S. alutus) were the species observed in greatest abundance. Only dusky and northern rockfish regularly occurred in trawlable areas, whereas these two species and many more occurred in untrawlable areas. The SDC was able to resolve the height of fish off the seafloor, and some of the rockfish species were observed only near the seafloor in the acoustic dead zone. This finding is important, in that fish found exclusively in the acoustic dead zone cannot be assessed acoustically. For these species, methods such as bottom trawls, long-lines, or optical surveys using line transect or area swept methods will be the only adequate means to estimate the abundance of these fishes. Our results suggest that the selection of appropriate methods for verifying targets will depend on the habitat types and species complexes to be examined.
Resumo:
Informed planning and decision-making in the management of natural resources requires an ability to integrate complex interactions in ecosystems and communicate these effectively to stakeholders. This involves coping with three fundamental dilemmas. The first comes from the irregular pulse of nature. The second is the recognition that there are no strictly objective criteria for judging the well-being of an ecosystem. The third is posed by the quest for indicators with some integrative properties that may be used to analyze an ecosystem and impart the information to the relevant resource users. This paper presents some examples of indicators used to: 1) assess the status of a coral reef and, in particular, the state of its fisheries resources; 2) identify reefs that are most threatened by human activities; and 3) evaluate the likelihood of success of management interventions. These indicators are not exhaustive, but illustrate the range of options available for the management of coral reef ecosystems.
Resumo:
Informed planning and decision-making in the management of natural resources requires an ability to integrate complex interactions in ecosystems and communicate these effectively to stakeholders. This involves coping with three fundamental dilemmas. The first comes from the irregular pulse of nature. The second is the recognition that there are no strictly objective criteria for judging the “well-being” of an ecosystem. The third is posed by the quest for indicators with some integrative properties that may be used to analyze an ecosystem and impart the information to the relevant resource users. This paper presents some examples of indicators used to: 1) assess the status of a coral reef and, in particular, the state of its fisheries resources; 2) identify reefs that are most threatened by human activities; and 3) evaluate the likelihood of success of management interventions. These indicators are not exhaustive, but illustrate the range of options available for the management of coral reef ecosystems.
Resumo:
The ability to estimate the original size of an ingested prey item is an important step in understanding the community and population structure of piscivorous predators (Scharf et al., 1998). More specifically, knowledge of original prey size is essential for deriving important biological information, such as predator consumption rates, biomass of the prey consumed, and selectivity of a predator towards a specific size class of prey (Hansel et al., 1988; Scharf et al., 1997; Radke et al., 2000). To accurately assess the overall “top-down” pressure a predator may exert on prey community structure, prey size is crucial. However, such information is often difficult to collect in the field (Trippel and Beamish, 1987). Stomach-content analyses are the most common methods for examining the diets of piscivorous fish, but the prey items found are often thoroughly digested and sometimes unidentifiable. As a result, obtaining a direct measurement of prey items is frequently impossible.
Resumo:
Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.