15 resultados para drain

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many fisheries are potentially very valuable. According to a recent report by the World Bank and the FAO (2008), global fisheries rents could be as high as US$ 40-60 billion annually on a sustainable basis. However, according to the report, due to the “common property problem”, most fisheries of the world are severely overexploited and generate no economic rents. The Lake Victoria Nile perch fishery could be among the most valuable fisheries in the world. Unfortunately, also this fishery has fallen prey to the common property problem with excessive fishing effort, dwindling stocks and declining profitability. As a result, there is a large and growing rents loss in this fishery (compared to the optimal) reducing economic welfare and economic growth opportunities in the countries sharing this fishery. As in other fisheries, the biological and economic recovery of this fishery can only come though improved fisheries management

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tidal creek ecosystems are the primary aquatic link between stormwater runoff form the land and estuaries. Small tidal creeks begin in upland areas and drain into larger creeks forming a network. The creeks increase in size until they join a tidal river, sound, bay, or harbor that ultimately conect to the coastal ocean. The upper regions or headwaters of tidal creeks are "first responders" to stormwater runoff and are an important habitat for evaluating the impacts of coastal development on aquatic ecosystems. (PDF contains 22 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wilmington is situated on the divide of two major watersheds, the Cape Fear River and the Atlantic Intracoastal Waterway. All surface waters in Wilmington drain to one of these two water bodies and are divided into two groups: tidal creeks and Cape Fear River tributaries. Cape Fear River tributaries drain directly to the Cape Fear River and comprise the western portion of Wilmington’s surface waters. Tidal creeks drain directly into the Atlantic Intracoastal Waterway and make up the eastern portion of Wilmington’s surface waters. (PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malta, situated in the Mediterranean Sea south of Sicily, is a small island of less than 300 km2. Two hundred years ago Malta was a wet and sodden country. The limestone was like a sponge, with numerous perennial springs, great and small, and so full of water that most flat areas did not drain, but were marsh. Water from springs, rivers and marshes was in ample supply. In the space of two centuries, Malta's rivers have passed from being good, spring-regulated watercourses with a mixed community of clean limewater plants, to the present-day situation where many if not all are on the verge of extinction. This is the result of human impact, not climate change, and is set to continue and increase. Unfortunately the best wetland-type valley communities were scheduled to be destroyed in 1997 but, after a change of Government and vigorous representations, these may now be spared. However, there is at least a great opportunity to prevent further fragmentation of remaining rivers and to reclaim some of the fragmented portions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the report from the Mersey and Weaver Fisheries Advisory Committee meeting, which was held on the 19th January, 1977. The report contains information the construction of a new surface water drain to Pennington Flash, fisheries activities, fish stocking, eel fishing and estuarial waters, and infectious Pancreatic Necrosis. The section on fisheries activities includes brown/rainbow trout, roach, perch, bream, carp, tench and rudd stocking and fish mortalities. The section on Infectious Pancreatic Necrosis highlights its prevention on imports of salmonid fish and ova. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the Evaluation of the impact of cypermethrin use in forestry on Welsh streams from the University of Plymouth, published on September 2010 by the Environment Agency South West. The report focuses attention on Cypermethrin, a highly active synthetic pyrethroid insecticide effective against a wide range of pests in agriculture, public health, and animal husbandry. It is also used in forestry to control the pine weevil, Hylobius abietis. Cypermethrin is very toxic to aquatic invertebrates and fish at nanogram per litre concentrations. This project checks the effectiveness of current best practice measures in minimising the risk of pollution associated with the use of cypermethrin in forestry in Wales. Chemical results from the intensive studies show that cypermethrin entered minor watercourses draining treated areas at two of the eight sites. In one of these cases the level was well in excess of the short-term Predicted No Effect Concentration. The absence of a buffer area at the other site resulted in the cypermethrin reaching a main drain. However dilution appeared to be sufficient to prevent any impact on water quality or on the invertebrate community in the main stream. Invertebrate and chemical data from the extensive survey showed little evidence of pollution due to wider use of cypermethrin in Welsh forestry. Finally, a number of recommendations are made for further tightening controls on forestry practice to minimise the risk of cypermethrin entering the aquatic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of emerging risks in the aquatic environment is a major concern and focus of environmental science (Daughton and Ternes, 1999). One significant class of chemicals that has received relatively little attention until recently are the human use pharmaceuticals. In 2004, an estimated 2.6 billion prescriptions were written for the top 300 pharmaceuticals in the U.S. (RxList, 2005). Mellon et al. (2001) estimated that 1.4 million kg of antimicrobials are used in human medicine every year. The use of pharmaceuticals is also estimated to be on par with agrochemicals (Daughton and Ternes, 1999). Unlike agrochemicals (e.g., pesticides) which tend to be delivered to the environment in seasonal pulses, pharmaceuticals are continuously released through the use/excretion and disposal of these chemicals, which may produce the same exposure potential as truly persistent pollutants. Human use pharmaceuticals can enter the aquatic environment through a number of pathways, although the main one is thought to be via ingestion and subsequent excretion by humans (Thomas and Hilton, 2004). Unused pharmaceuticals are typically flushed down the drain or wind up in landfills (Jones et al. 2001).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine environment of Pakistan has been described in the context of three main regions : the Indus delta and its creek system, the Karachi coastal region, and the Balochistan coast. The creeks, contrary to concerns, do receive adequate discharges of freshwater. On site observations indicate that freshwater continues flowing into them during the lean water periods and dilutes the seawater there. A major factor for the loss of mangrove forests as well as ecological disturbances in the Indus delta is loss of the silt load resulting in erosion of its mudflats. The ecological disturbance has been aggravated by allowing camels to browse the mangroves. The tree branches and trunks, having been denuded of leaves are felled for firewood. Evidence is presented to show that while indiscriminate removal of its mangrove trees is responsible for the loss of large tracts of mangrove forests, overharvesting of fisheries resources has depleted the river of some valuable fishes that were available from the delta area. Municipal and industrial effluents discharged into the Lyari and Malir rivers and responsible for land-based pollution at the Karachi coast and the harbour. The following are the three major areas receiving land-based pollution and whose environmental conditions have been examined in detail: (l) the Manora channel, located on the estuary of the Lyari river and serving as the main harbour, has vast areas forming its western and eastern backwaters characterized by mud flats and mangroves. The discharge of industrial wastewater from the S.I.T.E. and municipal effluents from the northern and central districts into the Lyari has turned this river into an open drain. This, in turn, has caused a negative impact on the environment of the port, fish harbour, and the adjacent beaches. (2) The Gizri creek receives industrial and municipal effluents from the Malir river as well as from several industries and power stations. The highly degraded discharges from the Malir have negatively impacted the environment in this creek. (3) The coastline between the Manora channel and Gizri creek where the untreated municipal effluents are discharged by the southern districts of Karachi, is responsible for the degraded environment of the Chinna creek, and also of the beaches and the harbour. The Balochistan coast is relatively safe from land-based pollution, mainly because of the lack of industrial, urban or agricultural activity, except the Hingol river system where some agricultural activities have been initiated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of wide-ranging monitoring studies have been performed in order to estimate the degree of mercury (Hg) contamination in freshwater ecosystems. Knowledge regarding contamination of different levels of the food chain is necessary for estimation of total pollutant input fluxes and subsequent partitioning among different phases in the aquatic system. The growing international concern about this environmental data is closely related to the strongly developing ecological risk assessment activities. In addition,freshwater monitoring outputs hold a key position in the estimation of the Hg dose consumed by the human population as it is highly dependent on fish consumption. So monitoring of Hg in the tissue of edible fish is extremely important because of contaminated fish has caused serious neurological damage to new born babies and adults. Mercury tends to accumulate in fish tissue, particularly, in the form of methyl mercury, which is about 10 times more toxic than inorganic mercury. The Anzali lagoon is one of the biggest wetland of Guilan province, which joins to the Caspian sea. Many Chemical and industrial factories plus agricultural runoffs and urban and rural sewages are major polluting sources of the Anzali wetland. Since many of those polluting sources drain their wastes directly or indirectly into the Anzali wetland and their sewages may be polluted with Hg, this study was conducted to find out the bioaccumulation of Hg bioaccumulation in pike (Esox lucius) food chain from Anzali lagoon, Iran. Sampling were carried out from July 2004 to July 2005, in addition 318 speciments of 9 fish species were collected. T-Hg was measured by LECO AMA 254 Advanced Mercury Analyzer (USA) according to ASTM standard No D-6722. Each sample was analyzed 3 times. Accuracy of T-Hg analysis was checked by running three samples of Standard Reference Materials; SRM 1633b, SRM 2711 & Sra 2709. Detection limit was 0.001 mg/kg in dry weight. The Accuracy degree of analyzor equipment with RSD<%0.05 (N=7) was between %95.5 and %105. In overal eigth fish species were distingushed in the gut content of 87 speciments of pike with age 1-5 year and maximum length 550mm. The max. and min. concentration of T-Hg in dorsal muscle of pjke was 0.2ppm in one year and 1.2ppm in five year class. The mean of T-Hg significantly increased with age and length increased (P<0.05).Mercury accumulation pattern in pike was as well as muscle > liver > spleen (P<0.05). THg content in female was higher than male(P<0.05). In contrast the mean of THg concentration in dorsal muscle of eigth fish species as prey was 0.282, 0.261, 0.328, 0.254, 0.256, 0.286, 0.322 and 0.241 ppm for Carassius auratus gibelio, Hemiculter leucisculus, Blicca bjoerkna transcaucasica, Chalcalburnus mossulensis, Rhodeus sericeus amarus, Gambusia holbrooki, Alburnus charusini hohenackeri & Scardinius Erythrophthalmus respectively.Liner regresion indicated that high degree of relationship between age of pike and Uptak/Intake ratio (R2=%99.12) and indicated that the mercury bioaccumulation in the pike dorsal muscle increased with age increased. BFA was >1 and and indicating the mercury biomagnification in the pike food chain. Trophy level of pike in the Anzali lagoon was estimated as well as 3.5 and 4 . It is generally agreed that Hg concentration in carnivorous fish are higher than in noncarnivorous species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Uganda waters of Lake Victoria comprise an area of 28,500 square kilometres with a shore line of 2,380 kilometres extending from the Uganda/Tanzania border in the west to the Uganda/Kenya border in the east. A large part of the Uganda waters of the lake is less than 60 metres deep, waters deeper than 60 metres being on the eastern side of the lake. Thus the Uganda part of the lake is tilted towards the east. A number of rivers drain into the lake from the north and the River Nile flows out of the lake towards the Mediterranean Sea. The Ssese, Kome, Buvuma and Busoga Islands form a very distinctive feature of the lake. These are perhaps the remaining high hills which survived the drowning of the northern valleys during the formation of the lake. In fact, in T. P. O'Brien's book 'The Prehistoric Uganda Protectorate (1939)', Solmon gives a critical summary of the work on the formation of Lake Victoria and shows that the northern part of the lake has numerous drowned valleys, a feature which provides varying habitats for particular species of fish and which may have an effect on the species composition reflected in the catches in different areas along the northern shore of the lake. It is interesting to note that although Lake Victoria as a whole has a number of rivers draining into it, Halbfass (1923) calculated and found that 76 per cent of the water entering the lake is precipitation on the lake surface.