3 resultados para distance measurement systems
em Aquatic Commons
Resumo:
The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)
Resumo:
For monitoring of the engine power of fishing vessels permitted for fishery in the plaice box with engine power of 300 HP or less at sea three different portable power measurement systems are developed and tested. A system measuring the twist of the propeller shaft by two divisible gearwheels mounted on the shaft worked well at shafts with roller bearing at both sides of the measured interval of 100–300 mm length. Only at a very few fishing vessels this system is applicable and therefore for monitoring purposes not suitable. The application of a commercial available system measuring the stress at the surface of the shaft was simplified for application by non experts. The torque is measured by strain gauges. The calibration of the system, measuring and recording of the power is done by a PC automatically. A small polished facet on the shaft protected against oxidation is needed for easy and quick application. In this case the system can be used by technical personnel of supervision boats for monitoring of the engine power at sea in a short time. A third power measurement system determinates the torque by measuring the displacement of two supports clamped on the shaft at a distance of 100 mm. The displacement is measured by a micrometer gauge mounted on one of the supports. Readout of the rotating gauge display is possible taking advantage of stroboscopic effect. The system needs no conditioning of the shaft and can be used by non technicians. The development is not finished until now and some additional investigations and tests are required. Additional measures for monitoring of the power on fishing vessels by self recording power measurement systems and sealed fuel racks with limited injection are reported and discussed.
Resumo:
We describe the application of two types of stereo camera systems in fisheries research, including the design, calibration, analysis techniques, and precision of the data obtained with these systems. The first is a stereo video system deployed by using a quick-responding winch with a live feed to provide species- and size- composition data adequate to produce acoustically based biomass estimates of rockfish. This system was tested on the eastern Bering Sea slope where rockfish were measured. Rockfish sizes were similar to those sampled with a bottom trawl and the relative error in multiple measurements of the same rockfish in multiple still-frame images was small. Measurement errors of up to 5.5% were found on a calibration target of known size. The second system consisted of a pair of still-image digital cameras mounted inside a midwater trawl. Processing of the stereo images allowed fish length, fish orientation in relation to the camera platform, and relative distance of the fish to the trawl netting to be determined. The video system was useful for surveying fish in Alaska, but it could also be used broadly in other situations where it is difficult to obtain species-composition or size-composition information. Likewise, the still-image system could be used for fisheries research to obtain data on size, position, and orientation of fish.