2 resultados para dissipation

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining of beach states and study of manner sediment transmission in beach profile, involves the evaluating the actions of hydrodynamic forces dominated over the beaches, in this research through determining the beach states by the help of Hanson and short method, different reactions of Mazandaran’s shoreline against wind waves was studied and investigated. For this reason, First, the kind of hydrodynamic forces dominated over the beaches of this province was studied and beaches of the this province was distinguished as wave–dominated beaches, afterwards eight stations are chosen throughout the shoreline and the waves qualities and the sediments regarding to different depth was evaluated in these stations by using software and laboratory actions. In this way the parameter of dimensionless fall velocity each station was calculated and the beach states and their changes according to time was studied. Finally, the gained information is located in the software area of Arc GIS, and the waves dynamics and the way of erosion and accretion was evaluated in each station. In this research by study of air photographs during a thirty years period we found that was no remarkable changes at shoreline in western and central parts and each type of change depends upon the delta, while eastern part of coast at the location of breakwaters in neighbouring of Farahabad Station, accretion features is quiet evident. In the main results of this research, it became obvious that the beach state in the stations Neca, Farahabad, Larim, Naftchal, Mazandaran university, Babolsar, Noor is dissipative and the beach in Nashtarood station is in intermediate (ridge and runnel) state to the extend that in the dissipation beaches from east to west, the degree of dissipation of the beaches is decreased continuously.