4 resultados para direct detection

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment with gases containing CO, misleadingly called “tasteless smoke” or “clear smoke”, prior to freezing of fish like tuna, tilapia and swordfish (to name only a few of these species that are characterised by an intensive coloration of flesh) stabilise the fresh red colour of muscle also after thawing and suggest consumers non-existing freshness. In the European Union, carbon monoxide is excluded from being a permitted additive and therefore this handling is not allowed. Notwithstanding of the clear legal position, producers and traders are trying to establish CO treated fish on the market. In the case of taking legal measures the food control laboratories have to provide evidence that fish has been treated by CO and therefore a respective method is necessary. The method of determination of carbon monoxide in fish flesh presently applied requires considerable material and mechanistic effort to detect CO by GC after catalytic transformation into methane. The aim of our work was a direct detection of CO using suitable sensor technology. Mechanistic requirements and results of preliminary investigations to detect carbon monoxide in fish flesh will be described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most microbiological methods require culture to allow organisms to recover or to selectively increase, and target organisms are identified by growth on specific agar media. Many cultural methods take several days to complete and even then the results require confirmation. Alternative techniques include the use of chromogenic and fluorogenic substances to identify bacteria as they are growing, selective capture using antibodies after short periods of growth, molecular techniques, and direct staining with or without flow cytometry for enumeration and identification. Future microbiologists may not use culture but depend on the use of specific probes and sophisticated detection systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three direct plating methods and two most probable number (MPN) procedures were compared for the enumeration of Clostridium perfringens in seafoods the sulfitecycloserine (SC) agar, sulfite-polymyxin-sulfadiazine (SPS) agar, tryptone-sulfite- neomycin (TSN) agar, LS medium MPN procedure and iron milk MPN procedure. Isolates were confirmed as C. perfringens. The two MPN procedures compared very well with the three plating media tested with stock culture of C. perfringens from our laboratory collection and the reference strain NCIB 6125. But in fish samples, the two liquid media were found to be more sensitive and hence the MPN procedure using LS medium for the detection of C. perfringens in seafoods is suggested.