5 resultados para dihedral corner reflector

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On an early fall day in September 1962 I sat quietly, thoughtfully, at my large desk in a newly renovated corner office in the old Crane wing of the Lillie Building, Marine Biological Laboratory (MBL), Woods Hole, Massachusetts. Looking out through high, ancient windows, I could see the busy main street of Woods Hole in the foreground, Martha's Vineyard beyond, behind me the MBL Stone Candle House, across the street the Woods Hole Oceanographic Institution (WHOI) and to the far right, the Biological Laboratory of the Bureau of Commercial Fisheries (BCF)(Fig. 1). Down the inner hall from my office stretched renovated quarters for the fledgling, ongoing, year-round MBL Systematics-Ecology Program (SEP), which I had been invited to direct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experiment was conducted on six naturally turbid ponds in the village of Salakandi situated to the south-west corner of Bangladesh Agricultural University, Mymensingh for a period of three months from July to September '96. The experiment was performed by studying the physicochemical factors of water and soil, the biological factors such as densities of phytoplankton and zooplankton, and the growth of fishes. During the experimental period water turbidity varied among ponds. The highest value of turbidity was found to be 679±183.6 FTU in pond 1 and the lowest was 158±23.31 FTU in pond 4. The maximum and the minimum water transparency were recorded in the month of July and September respectably. The lowest net weight of fishes was found 28.8 kg/ha/year in pond 1 due to high turbidity and the highest was 35.8 kg/ha/year in pond 4 due to low turbidity. Most of the correlations between turbidity and transparency, phytoplankton, and zooplankton were significant at 1% and 5% levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the abundance, migration and management of Jatka (juvenile hilsa, Tenualosa ilisha) were conducted in the Gajner Beel, located at the south-east corner of the Pabna Irrigation and Rural Development Project (PIRDP) in Sujanagar Upazila of Pabna district, Bangladesh. The main Jatka season was found to be extended from mid August to mid October. Veshal/Bandh/Khora Jal (lift net) and Ber Jal (beach seine net) were found as the major gears involved in Jatka fishing. The estimated total amount of Jatka caught from the Beel during the studied season was 46.2 t. The migratory route of Jatka is extended from the Padma and/or Jamuna rivers to the Badai river and then to the Beel through the sluice gate. The possibility of breeding of hilsa in the Beel was nullified. Finally, a community based management plan was suggested for implementation by the Gajner Beel management committee.