11 resultados para ddc: 658.478
em Aquatic Commons
Resumo:
Populations of kilka in the Caspian Sea have important role in the food chain. This study was conducted to determine population parameters of three species of kilka in the south of the Caspian Sea, during 2006-2007. Mean length was 102.4±9.7 mm for common kilka, 117.8±6.9 mm for anchovy and 119.5±10.9 mm for bigeye. The relationship between length and weight indicated the negative allometric growth in the all three species. Mean age for common kilka, anchovy and bigeye were 3.6, 4.6 and 4.6 years, respectively. Sex ratio (M:F) were 0.52:1 for anchovy, 0.60:1 for common kilka and 1.60:1 for bigeye. The value of growth coefficient (K) was the highest (0.321) for the common kilka, (0.267) for the bigeye, and the lowest for the anchovy kilka (0.245). Total mortality estimated from the descending of the catch curve using the age structure, Z=1.280 yr-1 for common kilka, Z=1.067 yr-1 for anchovy, and Z=1.015 yr-1 for bigeye. Natural mortality (M) were estimated using Pauly formula as M=0.622, M=0.537 and M=0.503 per year for common kilka, bigeye and anchovy, respectively. Value of fishing mortality (F) were estimated from Z and M, as F=0.658 for common kilka, F=0.564 for anchovy and F=0.478 for bigeye. The exploitation rate (E) were estimated E=0.514 for common kilka, E=0.528 for anchovy and E= 0.471 for bigeye. The estimate of MCY (Maximum Constant Yield) was calculated using the more reliable time series of commercial catch data from 2001-2007, which resulted in an estimate of MCY for the kilka fishery of 14100 tonnes.
Resumo:
ENGLISH: The average linear growth rate of skipjack in the eastern Pacific is less than 1 mm per day except for fish 375 to 424 mm in length at release. The growth rate shows a decrease with increasing length and increasing time at liberty. The growth rate of fish in the length range of about 43 to 57 cm is apparently more rapid in the eastern Pacific than in the western Pacific. Dsing data for the northeastern and southeastern Pacific combined, K and ~ were estimated to be 0.658 (on an annual basis) and 885 mm, respectively, by the ungrouped method and 0.829 and 846 mm, respectively, by the grouped method. Sensitivity analyses have shown however, that the estimates of these parameters are poorly determined by the sum of squares method used to derive them. Estimates of K and ~ for the eastern Pacific tend to be lower and higher, respectively, than those for the western Pacific. The average linear growth rate of yellowfin in the eastern Pacific is a little less than 1 mm per day for fish between about 25 and 100 cm in length at release. The growth appears to be most rapid in Area 2 (Revillagigedo Islands) and slowest in Areas 1 (Baja California), 5 (Central America- Colombia), and 6 (Ecuador-Peru). There is considerable variation in the growth rates of individual fish. The growth does not show a decrease with increasing length or increasing time at liberty so realistic estimates of the parameters of the von Bertalanffy or other similar equations cannot be calculated from these data. If realistic estimates of these parameters are to be secured larger fish must be tagged and released or many more long-term returns from fish to about 100 cm in length at release must be obtained. The growth patterns for the eastern Pacific, central Pacific and eastern Atlantic found by most other investigators differ from one another and from those found in the present study. Some of these differences may be real and others may be due to deficiencies in the data or the methods of analysis. Estimates obtained from tagging data are believed to be realistic provided the tags do not inhibit the growth of the fish. It appears that the growth rates of single- and double-tagged fish are the same; this indicates, though not unequivocally, that the tags do not inhibit the growth. SPANISH: La tasa media de crecimiento lineal del barrilete en el Pacífico oriental es inferior a lmm/día, excepto en el caso de peces de entre 375y 424mm de longitud de liberación. La tasa de crecimiento disminuye a medida que aumenta la longitud y el tiempo en libertad. La tasa de crecimiento de peces de entre unos 43 y 57 cm de longitud parece ser mayor en el Pacífico oriental que en el occidental. A partir de datos del Pacífico nororiental y suroriental combinados, se estimaron K y loo en 0.658 (anual) y 885mm, respectivamente, usando el método no agrupado, y 0.829 y 846mm, respectivamente, usando el método agrupado. Sin embargo, los análisis de sensitividad han demostrado que el método de suma de cuadrados utilizado para derivar las estimaciones de estos parámetros las determina con poca precisión. Las estimaciones de K y loo para el Pacífico oriental suelen ser inferiores y superiores, respectivamente, a los del Pacífico occidental. La tasa media de crecimiento lineal del aleta amarilla en el Pacífico oriental es ligeramente inferior a lmm/día para los peces de entre unos 25y 100cmde longitud de liberación. El crecimiento parece ser más rápido en el Area 2(Islas Revillagigedo),y más lento en las Areas 1(Baja California), 5 (Centroamérica-Colombia), y 6 (Ecuador-Perú). Las tasas de crecimiento de peces individuales varían considerablemente. El crecimiento no muestra una disminuciónconun aumento en la longitud o en el tiempo en libertad, y por consecuencia no se se pueden calcular estimaciones realistas de los parámetros de la ecuación de von Bertalanffy u otras ecuaciones similares a partir de estos datos. Para obtener estimaciones realistas de estos parámetros sería necesario marcar peces mayores u obtener muchas más devoluciones a largo plazo de marcas de peces de unos 100cm de longitud de liberación. Los patrones de crecimiento correspondientes al Pacífico oriental, Pacífico central, y Atlántico oriental descubiertos por la mayoría de los investigadores son diferentes entre síy también de los del presente estudio. Es posibleque algunas de estas diferencias sean verdaderas, mientras que otras se deban a faltas en los datos on en los métodos analíticos utilizados. Se considera que las estimaciones obtenidas a partir de los datos de marcado son realistas, suponiendo siempre que las marcas no impidan el crecimiento de los peces. Parece ser que las tasas de crecimiento de peces con una marca y con dos son idénticas, lo cual indica, aunque sin certeza total, que las marcas no ejercen tal efecto. (PDF contains 76 pages.)
Resumo:
Borno State possesses great potentials for fish production both from inland fisheries and aquaculture. The socio-economic and environmental production factors are suitable for fish production. If the potential of the State were well harnessed, it would be playing significant roles in achieving self-sufficiency in fish production in Nigeria. But the situation at the moment is that its fisheries potentials are not being optimally utilized. While the inland waters of Lake Chad are currently being recklessly exploited, aquaculture development is given little or no attention. It is evident that there is a missing link between research results and the potential end users. Because information in fish production variables is a pre-requisite for fisheries development, the gap that exists between two poles must be bridged, fisheries Extension provides this important link between research result and the end users of research findings. The paper examines the importance of extension services as the key to unlock fish production information that are usually consigned to the pages of academic journals and research publications
Resumo:
Ichthyoplankton surveys were conducted in shelf and slope waters of the northern Gulf of Mexico during the months of May–September in 2005 and 2006 to investigate the potential role of this region as spawning and nursery habitat of sailfish (Istiophorus platypterus). During the two-year study, 2426 sailfish larvae were collected, ranging in size from 2.0 to 24.3 mm standard length. Mean density for all neuston net collections (n=288) combined was 1.5 sailfish per 1000 m2, and maximum density was observed within frontal features created by hydrodynamic convergence (2.3 sailfish per 1000 m2). Sagittal otoliths were extracted from 1330 larvae, and otolith microstructure analysis indicated that the sailfish ranged in age from 4 to 24 days after hatching (mean=10.5 d, standard deviation [SD]=3.2 d). Instantaneous growth coefficients (g) among survey periods (n=5) ranged from 0.113 to 0.127, and growth peaked during July 2005 collections when density within frontal features was highest. Daily instantaneous mortality rates (Z) ranged from 0.228 to 0.381, and Z was indexed to instantaneous weight-specific growth (G) to assess stage-specific production potential of larval cohorts. Ratios of G to Z were greater than 1.0 for all but one cohort examined, indicating that cohorts were gaining biomass during the majority of months investigated. Stage-specific production potential, in combination with catch rates and densities of larvae, indicates that the Gulf of Mexico likely represents important spawning and nursery habitat for sailfish.
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.
Resumo:
A survey was conducted in 3000 fishermen households surrounding 54 wetlands (Beels) of Assam. The fish diversity of the wetlands has been decreasing during the last few years due to some extrinsic and intrinsic factors. The total number of fish species recorded so far during the present study is 67 belonging to 21 families. Cyprinidae is the most dominant family represented by major group species (8), intermediate group species (3) and minor group species (12) of high commercial value. Among these three groups, the diversity of fish species is higher in the minor group fish. The present paper deals with the economic condition of the fishermen who mainly fish in the wetlands. The economic condition of the fishermen community is found very poor. The income of fishermen varies from Rs. 4.478 to Rs.7,484 per annum. A regression analysis shows that the income of fishermen is not dependent alone on the fish production but it is exclusively dependent on the value of the fish catch. All the three groups (in terms of value) have significant influence at 10.00% confidence level. But analysis of β shows that the intermediate fish group exhibits the highest influence on the variation of the fishermen income followed by minor and major group respectively.