8 resultados para data-driven Stochastic Subspace Identification (SSI-data)
em Aquatic Commons
Resumo:
Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.
Resumo:
Molecular-based approaches for shark species identification have been driven largely by issues specific to the fishery. In an effort to establish a more comprehensive identification data set, we investigated DNA sequence variation of a 1.4-kb region from the mitochondrial genome covering partial sequences from the 12S rDNA, 16S rDNA, and the complete valine tRNA from 35 shark species from the Atlantic fishery. Generally, within-species variability was low in relation to interspecific divergence because species haloptypes formed monophyletic groups. Phylogenetic analyses resolved ordinal relationships among Carcharhiniformes and Lamniformes, and revealed support for the families Sphyrnidae and Triakidae (within Carcharhiniformes) and Lamnidae and Alopidae (within Lamniformes). The combination of limited intraspecific variability and sufficient between-species divergence indicates that this locus is suitable for species identification.
Resumo:
Stable isotope (SI) values of carbon (δ13C) and nitrogen (δ15N) are useful for determining the trophic connectivity between species within an ecosystem, but interpretation of these data involves important assumptions about sources of intrapopulation variability. We compared intrapopulation variability in δ13C and δ15N for an estuarine omnivore, Spotted Seatrout (Cynoscion nebulosus), to test assumptions and assess the utility of SI analysis for delineation of the connectivity of this species with other species in estuarine food webs. Both δ13C and δ15N values showed patterns of enrichment in fish caught from coastal to offshore sites and as a function of fish size. Results for δ13C were consistent in liver and muscle tissue, but liver δ15N showed a negative bias when compared with muscle that increased with absolute δ15N value. Natural variability in both isotopes was 5–10 times higher than that observed in laboratory populations, indicating that environmentally driven intrapopulation variability is detectable particularly after individual bias is removed through sample pooling. These results corroborate the utility of SI analysis for examination of the position of Spotted Seatrout in an estuarine food web. On the basis of these results, we conclude that interpretation of SI data in fishes should account for measurable and ecologically relevant intrapopulation variability for each species and system on a case by case basis.
Resumo:
The penaeid prawns of Sri Lanka from estuaries and sea are an important commercial fishery resource. This resource has been exploited over the last century or more by local fishermen using indigenous fishing gear from locally sail-driven or oar-driven fishing crafts. In more recent times, the Fisheries Research Division of the Department of Fisheries undertook surveys of the seas and lagoons of Sri Lanka with a view to ascertain whether any unexploited resources of prawns existed. These publications deal with the species composition, biology, distribution and abundance in the lagoons and inshore waters of Sri Lanka.