7 resultados para cumulative error
em Aquatic Commons
Resumo:
New technologies can be riddled with unforeseen sources of error, jeopardizing the validity and application of their advancement. Bioelectrical impedance analysis (BIA) is a new technology in fisheries research that is capable of estimating proximate composition, condition, and energy content in fish quickly, cheaply, and (after calibration) without the need to sacrifice fish. Before BIA can be widely accepted in fisheries science, it is necessary to identify sources of error and determine a means to minimize potential errors with this analysis. We conducted controlled laboratory experiments to identify sources of errors within BIA measurements. We concluded that electrode needle location, procedure deviations, user experience, time after death, and temperature can affect resistance and reactance measurements. Sensitivity analyses showed that errors in predictive estimates of composition can be large (>50%) when these errors are experienced. Adherence to a strict protocol can help avoid these sources of error and provide BIA estimates that are both accurate and precise in a field or laboratory setting.
Resumo:
What Are ~umulat iveE ffects? Coastal managers now recognize that many of the most serious resource degradation problems have built up gradually as the combined outcome of numerous actions and choices which alone may have had relatively minor impacts. For example, alteration of essential habitat through wetland loss, degradation of water quality from nonpoint source pollution, and changes in salinity of estuarine waters from water diversion projects can be attributed to numerous small actions and choices. These incremental losses have broad spatial and temporal dimensions, resulting in the gradual alteration of structure and functioning of biophysical systems. In the environmental management field, the term "cumulative effects" is generally used to describe this phenomenon of changes in the environment that result from numerous, small-scale alterations.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.
Resumo:
I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.
Cumulative inbreeding rate in hatchery-reared indian major carps of Karnataka and Maharashtra states
Resumo:
The state fisheries department hatcheries are the major suppliers of seed to the farmers in Karnataka and Maharashtra. The brood stocks of these hatcheries are genetically closed units. In the present study, effective population size and cumulative inbreeding rates were estimated. The cumulative inbreeding rates ranged from 2.69 to 13.75, 8.63 to 15.21 and 3.02 to 5.88 per cent for catla, mrigal and rohu, respectively, in Karnataka state hatcheries. In Maharashtra, the cumulative inbreeding rates for catla ranged from 7.81 to 39.34 per cent and it was 5.84 to 14.09 and 2.46 to 10.20 per cent for mrigal and rohu, respectively. To estimate the inbreeding rates in future generations, predictive models were developed using linear regression, and polynomial and power equations separately for each hatchery. Their multiple correlation and standard errors suggested that simple linear regression can predict the future inbreeding rate efficiently.