3 resultados para conservative tracking in 2D
em Aquatic Commons
Resumo:
A case study of Atlantic Salmon runs into the R. Tyvi (S. Wales) is presented. Radio tracking of over 200 salmon in 1988 and 1989 has demonstrated that flow is an important factor in modifying both run timing and migratory success. Entry of salmon into the river is typically in response to flow events, and periods of low falling flows delay entry and may directly result in reduced runs into the river. Delayed entry may also increase the proportion of the run migrating after the end of both rod and net fishing seasons. The implications of these results for net and rod catch and catch/effort data are discussed, using both statutory reported catch data and data from specific catch/effort studies. Flow is demonstrated to be a dominant factor in determining the within-season distribution of rod catch and catch/effort during low-flow years. Estuarial seine net catch and catch/effort tend to be controlled more by time of return than by flow although low flows may delay runs. Annual reported rod catch is correlated with flow, which controls in season availability, catchability and consequently the amount of fishing effort. Use of catch or catch/effort data should take account of inter-year variations in flow and other environmental factors. Although catch and catch/effort are valuable indicators of fishery performance, they are inadequate to represent changing stock levels.
Resumo:
Data recovered from 11 popup satellite archival tags and 3 surgically implanted archival tags were used to analyze the movement patterns of juvenile northern bluefin tuna (Thunnus thynnus orientalis) in the eastern Pacific. The light sensors on archival and pop-up satellite transmitting archival tags (PSATs) provide data on the time of sunrise and sunset, allowing the calculation of an approximate geographic position of the animal. Light-based estimates of longitude are relatively robust but latitude estimates are prone to large degrees of error, particularly near the times of the equinoxes and when the tag is at low latitudes. Estimating latitude remains a problem for researchers using light-based geolocation algorithms and it has been suggested that sea surface temperature data from satellites may be a useful tool for refining latitude estimates. Tag data from bluefin tuna were subjected to a newly developed algorithm, called “PSAT Tracker,” which automatically matches sea surface temperature data from the tags with sea surface temperatures recorded by satellites. The results of this algorithm compared favorably to the estimates of latitude calculated with the lightbased algorithms and allowed for estimation of fish positions during times of the year when the lightbased algorithms failed. Three near one-year tracks produced by PSAT tracker showed that the fish range from the California−Oregon border to southern Baja California, Mexico, and that the majority of time is spent off the coast of central Baja Mexico. A seasonal movement pattern was evident; the fish spend winter and spring off central Baja California, and summer through fall is spent moving northward to Oregon and returning to Baja California.
Resumo:
We have recently exchanged and integrated into a single database tag detections for conch, teleost and elasmobranch fish from four separately maintained arrays in the U.S. Virgin Islands including the NMFS queen conch array (St. John nearshore), NOAA’s Biogeography Branch array (St. John nearshore & midshelf reef); UVI shelf edge arrays (Marine Conservation District, Grammanik & other shelf edge); NOAA NMFS Apex Predator array COASTSPAN (St. John nearshore). The integrated database has over 7.5 million hits. Data is shared only with consent of partners and full acknowledgements. Thus, the summary of integrated data here uses data from NOAA and UVI arrays under a cooperative agreement. The benefits of combining and sharing data have included increasing the total area of detection resulting in an understanding of broader scale connectivity than would have been possible with a single array. Partnering has also been cost-effectiveness through sharing of field work, staff time and equipment and exchanges of knowledge and experience across the network. Use of multiple arrays has also helped in optimizing the design of arrays when additional receivers are deployed. The combined arrays have made the USVI network one of the most extensive acoustic arrays in the world with a total of 150+ receivers available, although not necessarily all deployed at all times. Currently, two UVI graduate student projects are using acoustic array data.