4 resultados para compact housing
em Aquatic Commons
Resumo:
A study on the status of fisheries and environmental impact assessment (EIA) was conducted on Bashundhara Baridhara Housing Project (BBHP), Dhaka, Bangladesh for prediction and measure the effects of housing project related development activities that have already been implemented and planned for future implementation. The project is still under development phase and so far allotted 10,000 plots of different sizes. The study shows that the original water bodies and natural fish production there from have greatly declined due to earth filling carried out for development of land for the housing. The physico-chemical parameters of the existing water body within the project area were found to be suitable for fish farming in the estate. A number of economically important fish species are found available in the existing lake. However, the natural fisheries resources of the existing lake is under great stress due to the changes made in the ecosystem, siltation, construction of building and dumping of house building and household waste materials. This has caused some important fish species of the lake to become critically endangered and vulnerable which have been documented in this paper. Appropriate regulatory and mitigating measures with respect to water management, disposal of construction garbage and other biomedical toxic substances far away from the water bodies are required to be taken to keep the water safe and suitable for fish production as well as for multipurpose use of the lake water.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.