3 resultados para common factors

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Table of Contents [pdf, 0.11 Mb] Executive Summary [pdf, 0.07 Mb] MODEL Task Team Workshop Report Final Report of the International Workshop to Develop a Prototype Lower Trophic Level Ecosystem Model for Comparison of Different Marine Ecosystems in the North Pacific [pdf, 11.64 Mb] Report of the 1999 MONITOR Task Team Workshop [pdf, 0.32 Mb] Report of the 1999 REX Task Team Workshop Herring and Euphausiid population dynamics Douglas E. Hay and Bruce McCarter Spatial, temporal and life-stage variation in herring diets in British Columbia [pdf, 0.10 Mb] Augustus J. Paul and J. M. Paul Over winter changes in herring from Prince William Sound, Alaska [pdf, 0.08 Mb] N. G. Chupisheva Qualitative texture characteristic of herring (Clupea pallasi pallasi) pre-larvae developed from the natural and artificial spawning-grounds in Severnaya Bay (Peter the Great Bay) [pdf, 0.07 Mb] Gordon A. McFarlane, Richard J. Beamish and Jake SchweigertPacific herring: Common factors have opposite impacts in adjacent ecosystems [pdf, 0.15 Mb] Tokimasa Kobayashi, Keizou Yabuki, Masayoshi Sasaki and Jun-Ichi Kodama Long-term fluctuation of the catch of Pacific herring in Northern Japan [pdf, 0.39 Mb] Jacqueline M. O’Connell Holocene fish remains from Saanich Inlet, British Columbia, Canada [pdf, 0.40 Mb] Elsa R. Ivshina and Irina Y. Bragina On relationship between crustacean zooplankton (Euphausiidae and Copepods) and Sakhalin-Hokkaido herring (Tatar Strait, Sea of Japan) [pdf, 0.14 Mb] Stein Kaartvbeedt Fish predation on krill and krill antipredator behaviour [pdf, 0.08 Mb] Nikolai I. Naumenko Euphausiids and western Bering Sea herring feeding [pdf, 0.07 Mb] David M. Checkley, Jr. Interactions Between Fish and Euphausiids and Potential Relations to Climate and Recruitment [pdf, 0.08 Mb] Vladimir I. Radchenko and Elena P. Dulepova Shall we expect the Korf-Karaginsky herring migrations into the offshore western Bering Sea? [pdf, 0.75 Mb] Young Shil Kang Euphausiids in the Korean waters and its relationship with major fish resources [pdf, 0.29 Mb] William T. Peterson, Leah Feinberg and Julie Keister Ecological Zonation of euphausiids off central Oregon [pdf, 0.11 Mb] Scott M. Rumsey Environmentally forced variability in larval development and stage-structure: Implications for the recruitment of Euphausia pacifica (Hansen) in the Southern California Bight [pdf, 3.26 Mb] Scott M. Rumsey Inverse modelling of developmental parameters in Euphausia pacifica: The relative importance of spawning history and environmental forcing to larval stage-frequency distributions [pdf, 98.79 Mb] Michio J. Kishi, Hitoshi Motono & Kohji Asahi An ecosystem model with zooplankton vertical migration focused on Oyashio region [pdf, 33.32 Mb] PICES-GLOBEC Implementation Panel on Climate Change and Carrying Capacity Program Executive Committee and Task Team List [pdf, 0.05 Mb] (Document pdf contains 142 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The toxicity of xenobiotic in aquatic ecosystems is influenced by many factors such as ambient temperature, water hardness, pond soil type, etc. In the present study, it was observed that air temperature, water hardness and soil sediment have profound influence on the toxicity of deltamethrin to common carp fry (ay. length 3.5 ± 0.5 cm, ay. weight 0.58 ± 0.25 g); 96h LC(sub)50 values for common carp at 38.07 ± 2.20°C maximum and 27.86 ± 1.22°C minimum air temperature in soft and very hard water were 0.102 and 0.495 µg lˉ¹, respectively. This value had increased significantly to 2.37 and 3.02 µg at 30.55 ± 1.21°C maximum and 26.04 ± 0.61°C minimum air temperature, respectively. When sediment was included, 96h LC(sub)50 at 38.07°C maximum temperature in very hard water was 1.808 µg 1ˉ¹ and this had increased to 8.073 µg 1ˉ¹ when tested at 30.55°C maximum temperature. Due to the 7.5°C increase in maximum and 1.7°C in minimum temperature, toxicity increased significantly. Lower toxicity in very hard water in comparison to soft water may be due to the lower solubility of deltarnethrin and high level of calcium. Adsorption reaction of deltamethrin with clay, humus, FeOOH, MnOOH and particulate organic carbon, and complexation reaction with dissolved organic carbon were responsible for the lowered toxicity in the experiment with sediment. Exposure time had no significant effect on acute toxicity of deltamethrin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardness of water had significant effect on the acute toxicity of cadmium to common carp, Cyprinus carpio. The 96h LC sub(50) and safe application rate increased from 43.17 and 22.77 mg 1 super(-1) in soft water (0.9 mM Ca super(2+) l super(-1)) to 310.48 and 177.66 mg l super(-1), respectively, in very hard water (6.0 mM Ca super(2+) l super(-1)). In medium hard and hard water, 96h LC sub(50) values were 48.39 and 116.45 mg l super(-1). When sediments were included in the medium hard, hard and very hard water treatments, the 96h LC sub(50) were 111.20, 133.71 and 334.47 mg l super(-1), respectively. Among these values, the one for medium hard water with sediment treatment was significantly higher than medium hard water treatment; values for the other two treatments were non-significant when compared with respective water treatments. Sediment was able to reduce the acute toxicity of cadmium mainly due to the complexation of cadmium with dissolved organic carbon (DOC). At the lower hardness level, cadmium complexed with DOC and the acute toxicity was reduced significantly. At higher hardness, most of the DOC sites were occupied by calcium and the acute toxicity of cadmium was not significantly reduced in hard water with sediment and very hard water with sediment experiments in comparison to respective water treatments.