261 resultados para coastal groundwater discharge

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is a handbook about Chalk Rivers Nature Conservation and Management from March 1999 by the Water Research Centre and commissioned by English Nature and the Environment Agency, primarly provides an objective basis for formulating conservation strategies for relevant Site of Special Scientific Interest (SSSIs) and Special Areas of Conservation (SACs). It was also seen as being applicable to chalk rivers more generally and has increasingly been regarded as important to the work of the Biodiversity Action Plan Steering Group on chalk rivers, which is led by the Environment Agency. This report contains information on characteristic wildlife communities, their habitat requirements and the ecological impact of activities that are relevant to the chalk river environment. It provides guidance on setting management objectives, options for mitigating impacts, and measures for the maintaining and enhancing the river channel, riparian and floodplain areas associated. The term `chalk river’ is used to describe watercourses dominated by groundwater discharge from chalk geology, including those that flow over a range of non-chalk surface geologies at various points along their length. England contains numerous examples of this river type, located in and downstream of areas of outcropping chalk in the south, East Anglia and up into Lincolnshire and Yorkshire. Indeed, England has the major part of the chalk river resource of Europe. A number of chalk rivers have been designated as Sites of Special Scientific Interest (SSSIs) and English Nature and Environment Agency work drawing up joint conservation strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the technical report of a hydrogeological assessment of the Delamere sandsheet and environments by the Environment Agency. The overall objective of the study is to carry out Stage 3-appropriate assessment, under the EU Habitats Directive (92/43/EEC), of the influence of activities permitted by the Agency relating to groundwater on candidate Special Areas of Conservation (cSAC). The geology of Delamere area, based on published and collected information is described in Section2. Groundwater flow and water quality are described in Section 3, including sections on groundwater levels, aquifer properties, groundwater discharge and hydrogeochemisty. A water balance for the sandsheet for the period 2001-2002 is presented in Section 4, and the hydrogeological conceptual model of the area is described in Section 5. The assessment of the possible impacts of Agency-permitted groundwater abstractions on Oakmere and Abbots Moss is presented in Section 6 whilst conclusions and recommendations are given in Section 7.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Pluvial Lake Estancia in central New Mexico experienced large and rapid fluctuations in surface area and elevation during the build-up to and termination of the last glacial maximum (LGM). Due to continuous groundwater discharge, a minimum pool covering about 400 square kilometers was maintained in the central basin until about 12,000 years ago, ensuring a continuous depositional sequence even during low stands of the lake. ... The sensitive response to fluctuations in climate by several independent proxies at Estancia show that transport of Pacific moisture over western North America changed dramatically during the last Ice Age, perhaps comparable to the large and rapid changes in climate documented from high-latitude ice and North Atlantic marine sediments for the LCM and its transitions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toxic-waste associated with coastal brownfield sites can pose serious risks to human and environmental health. In light of anticipated sea-level rise (SLR) due to global climate change, coastal brownfields require heightened attention. The primary intent of this study is to pose questions and encourage discussion of this problem among policy makers. Impacts from SLR on coastal zones are examined within a brownfield policy framework and, current coastal brownfield policy discussions with respect to SLR are also examined. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 1994 and 1997, 258 tissue and 178 sediment samples were analyzed for chlorpyrifos throughout the coastal United States and the Great Lakes. Subsequently, 95 of the 1997 tissue samples were reanalyzed for endosulfan. Tissue chlorpyrifos concentrations, which exceeded the 90th percentile, were found in coastal regions known to have high agricultural use rates but also strongly correlated with sites near high population. The highest concentrations of endosulfans in contrast, were generally limited to agricultural regions of the country. Detections of chlorpyrifos at several Alaskan sites suggest an atmospheric transport mechanism. Many Great Lakes sites had chlorpyrifos tissue concentrations above the 90th percentile which decreased with increasing distance from the Corn Belt region (Iowa, Indiana, Illinois, and Wisconsin) where most agriculturally applied chlorpyrifos is used. Correlation analysis suggests that fluvial discharge is the primary transport pathway on the Atlantic and Gulf of Mexico coasts for chlorpyrifos but not necessarily for endosulfans. (PDF contains 28 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past one hundred and fifty years, the landscape and ecosystems of the Pacific Northwest coastal region, already subject to many variable natural forces, have been profoundly affected by human activities. In virtually every coastal watershed from the Strait of Juan de Fuca to Cape Mendocino, settlement, exploitation and development of resou?-ces have altered natural ecosystems. Vast, complex forests that once covered the region have been largely replaced by tree plantations or converted to non-forest conditions. Narrow coastal valleys, once filled with wetlands and braided streams that tempered storm runoff and provided salmon habitat, were drained, filled, or have otherwise been altered to create land for agriculture and other uses. Tideflats and saltmarshes in both large and small estuaries were filled for industrial, commercial, and other urban uses. Many estuaries, including that of the Columbia River, have been channeled, deepened, and jettied to provide for safe, reliable navigation. The prodigious rainfall in the region, once buffered by dense vegetation and complex river and stream habitat, now surges down sirfiplified stream channels laden with increased burdens of sediment and debris. Although these and many other changes have occurred incrementally over time and in widely separated areas, their sum can now be seen to have significantly affected the natural productivity of the region and, as a consequence, changed the economic structure of its human communities. This activity has taken place in a region already shaped by many interacting and dynamic natural forces. Large-scale ocean circulation patterns, which vary over long time periods, determine the strength and location of currents along the coast, and thus affect conditions in the nearshore ocean and estuaries throughout the region. Periodic seasonal differences in the weather and ocean act on shorter time scales; winters are typically wet with storms from the southwest while summers tend to be dry with winds from the northwest. Some phenomena are episodic, such as El Nifio events, which alter weather, marine habitats, and the distribution and survival of marine organisms. Other oceanic and atmospheric changes operate more slowly; over time scales of decades, centuries, and longer. Episodic geologic events also punctuate the region, such as volcanic eruptions that discharge widespread blankets of ash, frequent minor earthquakes, and major subduction zone earthquakes each 300 to 500 years that release accumulated tectonic strain, dropping stretches of ocean shoreline, inundating estuaries and coastal valleys, and triggering landslides that reshape stream profiles. While these many natural processes have altered, sometimes dramatically, the Pacific Northwest coastal region, these same processes have formed productive marine and coastal ecosystems, and many of the species in these systems have adapted to the variable environmental conditions of the region to ensure their long-term survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We have analyzed streamflow variations recorded at 15 USGS gauging stations in California during the past 90 years or so. The anomalies (departures from the 1960-1990 mean discharge) of streamflow on annual-to-decadal time scales are strongly correlated with precipitation anomalies in each drainage basin. ... Although causes of the decadal climate (precipitation) variability are not known with certainty, the use of streamflow records may help us understand the relative strengths of moisture sources and shift of the jet stream in atmospheric circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of coliforms and streptococci in Bombay coastal waters was investigated in order to determine the state of pollution in the area. Findings show the incidence of pollution to be of a recurring nature, primarily due to discharge of raw or improperly treated sewage; thus regular monitoring of the incidence of coliforms and streptococci is of importance in determining the public health safety of the beaches and coastal waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine environment of Pakistan has been described in the context of three main regions : the Indus delta and its creek system, the Karachi coastal region, and the Balochistan coast. The creeks, contrary to concerns, do receive adequate discharges of freshwater. On site observations indicate that freshwater continues flowing into them during the lean water periods and dilutes the seawater there. A major factor for the loss of mangrove forests as well as ecological disturbances in the Indus delta is loss of the silt load resulting in erosion of its mudflats. The ecological disturbance has been aggravated by allowing camels to browse the mangroves. The tree branches and trunks, having been denuded of leaves are felled for firewood. Evidence is presented to show that while indiscriminate removal of its mangrove trees is responsible for the loss of large tracts of mangrove forests, overharvesting of fisheries resources has depleted the river of some valuable fishes that were available from the delta area. Municipal and industrial effluents discharged into the Lyari and Malir rivers and responsible for land-based pollution at the Karachi coast and the harbour. The following are the three major areas receiving land-based pollution and whose environmental conditions have been examined in detail: (l) the Manora channel, located on the estuary of the Lyari river and serving as the main harbour, has vast areas forming its western and eastern backwaters characterized by mud flats and mangroves. The discharge of industrial wastewater from the S.I.T.E. and municipal effluents from the northern and central districts into the Lyari has turned this river into an open drain. This, in turn, has caused a negative impact on the environment of the port, fish harbour, and the adjacent beaches. (2) The Gizri creek receives industrial and municipal effluents from the Malir river as well as from several industries and power stations. The highly degraded discharges from the Malir have negatively impacted the environment in this creek. (3) The coastline between the Manora channel and Gizri creek where the untreated municipal effluents are discharged by the southern districts of Karachi, is responsible for the degraded environment of the Chinna creek, and also of the beaches and the harbour. The Balochistan coast is relatively safe from land-based pollution, mainly because of the lack of industrial, urban or agricultural activity, except the Hingol river system where some agricultural activities have been initiated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coastal water of the metropolitan city of Mumbai has deteriorated due to the indiscriminate discharge of untreated sewage and industrial waste in huge quantities. Mahim creek is one such locality surrounded by a large number of industrial units discharging heavy metals. The accumulation of the heavy metals Cu, Cd, Zn and Pb in finfishes (Coilia dussumeri, Lepturacanthus savala, Harpodon nehereus and Johnieops elongates) from this locality along with that in the sediment was studied. The rate of accumulation of Cu was high compared to Cd, Zn and Pb. A gradual increase in the bioaccumulation of heavy metals was noticed in fishes with increase in average body weight and length, perhaps due to biomagnification. A declining trend in concentration of heavy metals horizontally from inshore to offshore was observed in these fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a step to address the problems of coastal fisheries in Asia, the WorldFish Center joined forces with fisheries agencies from eight developing Asian countries (Bangladesh, India, Indonesia, Malaysia, The Philippines, Sri Lanka, Thailand and Vietnam) and the Asian Development Bank, to implement a project entitled “Sustainable Management of Coastal Fish Stocks in Asia” (also known as the “TrawlBase” project). The project was implemented between 1998 and 2001. The main achievements of this partnership were: (a) Development of a database called “Fisheries Resource Information System and Tools” (FiRST), which contains trawl research survey data and socioeconomic information for selected fisheries, and facilitates its analysis; (b) Evaluation of the extent of resource decline and over-fishing, both biological and economic, in the region; (c) Identification of the measures needed to manage coastal fisheries in the participating countries, resulting in draft strategies and action plans; and (d) Strengthening of national capacity in coastal fisheries assessment, planning and management.