2 resultados para closed-form solution
em Aquatic Commons
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.