11 resultados para climate-vegetation interaction
em Aquatic Commons
Resumo:
We described the diet of the eastern stock of Steller sea lions (Eumetopias jubatus) from 1416 scat samples collected from five sites in Oregon and northern California from 1986 through 2007. A total of 47 prey types from 30 families were identified. The most common prey was Pacific hake (Merluccius productus), followed by salmonids (Oncorhynchus spp.), skates (Rajidae), Pacific lamprey (Lampetra tridentata), herrings (Clupeidae), rockfish (Sebastes spp.), and northern anchovy (Engraulis mordax). Steller sea lion diet composition varied seasonally, annually, and spatially. Hake and salmonids were the most commonly identified prey in scats collected during the summer (breeding season), whereas hake and skate were most common in the nonbreeding season. Continued research on Steller sea lion diet and foraging behavior in the southern extent of their range is necessary to address issues such as climate change, interaction with competing California sea lions, and predation impacts on valuable or sensitive fish stocks.
Resumo:
A normalized difference vegetation index (NDVI) has been produced and archived on a 1° latitude by 1° longitude grid between 55°S and 75°N. The many sources of data errors in the NDVI include cloud contamination, scan angle biases, changes in solar zenith angle, and sensor degradation. Week-to-week variability, primarily caused by cloud contamination and scan angle biases, can be minimized by temporally filtering the data. Orbital drift and sensor degradation introduces interannual variability into the dataset. These trends make the usefulness of a long-term climatology uncertain and limit the usefulness of the NDVI. Elimination of these problems should produce an index that can be used for climate monitoring.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Though knowledge of fire occurrence and weather pattern relationships has been used for many years by land managers in, for instance, prescribed fire planning, understanding of the relationship between Holocene climates and fire is just beginning to be investigated. We are investigating this relationship in a major mountain range in California, examining charcoal and pollen content in sediments of montane meadows to compare paleo-fire and paleo-vegetation (thus, climate) sequences for the Holocene.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Paleoclimatic variations in western North America depend on a hierarchy of temporal and spatial controls that can be examined using a combination of modeling studies and data synthesis. ... The regional vegetation response to large-scale changes in the climate system of the last 21,000 years is used as a conceptual model to help explain earlier vegetation and climate at two localities.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The suppression of primary productivity observed in eastern boundary ecosystems of the Pacific during El Nino episodes does not occur throughout the Gulf of California. On the contrary, analysis of the modern siliceous phytoplankton record from annually layered sediments and compilation of available primary productivity measurements indicate that production is significantly increased in the central Gulf during El Nino years compared to anti-El Nino years. Integrated observations of biological and physical variability during the spring of 1983, under the influence of the strong El Nino, show that very high primary productivity occurred along the eastern margin of the central Gulf. This resulted from the upwelling of a nutrient rich source provided by the locally formed Gulf water mass originating in the northern Gulf. Lower productivity and phytoplankton biomass were associated with the anomalous penetration of Tropical Surface Water along the western side of the Gulf.
Resumo:
The effect of decreasing frost frequency on desert vegetation was documented in Grand Canyon by replication of historical photographs. Although views by numerous photographers of Grand Canyon have been examined, 400 Robert Brewster Stanton and Franklin A. Nims views taken in the winter of 1889-1890 provide the best information on recent plant distribution. In Grand Canyon, where grazing is limited by the rugged topography, vegetation dynamics are controlled by climate and by demographic processes such as seed productivity, recruitment, longevity and mortality. The replicated photographs show distribution and abundance of several species were limited by severe frost before 1889. Two of these, brittlebush (Encelia farinosa) and barrel cactus (Ferocactus cylindraceus), have clearly expanded their ranges up-canyon and have increased their densities at sites where they were present in 1890. In 1890, brittlebush was present in warm microhabitats that provided refugia from frost damage. Views showing desert vegetation in 1923 indicate that Encelia expanded rapidly to near its current distribution between 1890 and 1923, whereas the expansion of Ferocactus occurred more slowly. The higher frequency of frost was probably related to an anomalous increase in winter storms between 1878 (and possibly 1862) and 1891 in the southwestern United States.
Resumo:
Climate conditions in land areas of the Pacific Northwest are strongly influenced by atmosphere/ocean variability, including fluctuations in the Aleutian Low, Pacific-North American (PNA) atmospheric circulation modes, and the El Niño-Southern Oscillation (ENSO). It thus seems likely that climatically sensitive tree-ring data from these coastal land areas would likewise reflect such climatic parameters. In this paper, tree-ring width and maximum lakewood density chronologies from northwestern Washington State and near Vancouver Island, British Columbia, are compared to surface air temperature and precipitation from nearby coastal and near-coastal land stations and to monthly sea surface temperature (SST) and sea level pressure (SLP) data from the northeast Pacific sector. Results show much promise for eventual reconstruction of these parameters, potentially extending available instrumental records for the northeastern Pacific by several hundred years or more.
Resumo:
How do tropical heating fluctuations create North American climate anomalies? We propose some answers using the results from a simplified global atmospheric model. We find that the South Asian-tropical west Pacific area is especially effective at stimulating North American responses. The relatively strong tropical/extratropical interaction between these two areas is the result of two major processes acting on the Rossby wave signal induced by the tropical heating fluctuations. These factors are: 1) Wave guiding by the Asian-north Pacific subtropical jet; and 2) Wave amplification within unstable regions of the jet flank. These factors allow relatively small, remote, and short-term tropical fluctuations to have relatively large impacts on North American climate.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Large-scale changes in the growth and decay of land plants can be deduced from trends in the concentration of atmospherics [sic] carbon dioxide, after removing signals in the recorded data caused by oceanic and industrial disturbances to the concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High resolution paleobotanical records provide sufficient detail to correlate events regionally. Once correlated events can be examined in tandem to determine the underlying inputs that fashioned them. Several localities in the Great Basin have paleobotanical records of sufficient detail to generate regional reconstructions of vegetation changes for the last 2 ka and provide conclusions as to the climates that caused them.
Resumo:
One of the most important marine ecological phenomena is red tide which is created by increasing of phytoplankton population, influenced by different factors such as climate condition changes, utrification hydrological factors and can leave sever and undesired ecological and economical effects behind itself in the case of durability. Coast line of Hormozgan is about 900km from east to west, within the range of geographical coordinates of 56 16 23.8, 26 58 8.8 to 54 34 5.33 and 26 34 32 eastern longitude and northern latitude, seven sampling stations were considered and sampled for a period of one year from October 2008 to October 2009. after the analysis of Satellite images, monthly, during the best time. In several stages, samplings were performed. In each station, three samples were collected for identification and determination of Bloom- creating species abundance. Cochlodinium polykrikoides was the species responsible for the discoloration which occurred at October 2008 in Hormozgan marine water. Environmental parameters such as sea surface temperature, pH, salinity, Dissolved Oxygen concentration, Total Dissolved Solids (T.D.S.), conductivity, nitrate, nitrite and phosphate and also chlorophyll a were measured and calculated. Kruscal Wallis test was used to compare the densities between different months, seasons and the studied stations. Mann-whitney test from Nonparametric Tests was used for couple comparison. Pearson correlation coefficient was used to determine the relationship between physical and chemical data set and the abundance of Cochlodinium polykrikoides. Multivariate Regression and analysis of variance (ANOVA) also were used to obtain the models and equations of red tide occurrence relationship, environmental parameters and nutrient data. The highest density was 26 million cells per liter in Qeshm station. A meaningful difference was observed between sampling months and seasons but there was no between sampling stations which indicates that in favorable conditions, the occurrence of this phenomenon by the studied species is probable. Regarding to β coefficients of nitrate, temperature, phosphate, Total Dissolvable Solutions (T.D.S) and pH these parameters are effective on the abundance of this species and red tide occurrence. Increase in these factors can represent the effects and outcomes of human activities and increase in marine pollution.