5 resultados para capacitance-frequency characteristics

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In trawl surveys a cluster of fish are caught at each station, and fish caught together tend to have more similar characteristics, such as length, age, stomach contents etc., than those in the entire population. When this is the case, the effective sample size for estimates of the frequency distribution of a population characteristic can, therefore, be much smaller than the number of fish sampled during a survey. As examples, it is shown that the effective sample size for estimates of length-frequency distributions generated by trawl surveys conducted in the Barents Sea, off Namibia, and off South Africa is on average approximately one fish per tow. Thus many more fish than necessary are measured at each station (location). One way to increase the effective sample size for these surveys and, hence, increase the precision of the length-frequency estimates, is to reduce tow duration and use the time saved to collect samples at more stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, Iranian and French male and female Oncorhynchus mykiss broodstocks were divided into two groups 50 and 24 respectively in Research center of genetic and breeding of coldwater fishes, Yasouj, Iran and the genetic structure of them was investigated using 6 microsatellite markers. Then 19 morphometric and 5 meristic of broodstock were measured and compared in two populations. Along with broodstock maturation, fertilization 1:1(female:male) were randomly assigned and occurred in 25 of 12 Iranian and French treatment respectively. Reproductive parameters were recorded for the whole family. Average number of observed alleles in Iranian and French stocks was 6.68 and 6.83, respectively. Average number of effective alleles in Iranian and French stocks was 3.13 and 3.45 respectively. Fixation index Fst was calculated based on allelic frequency between two stocks was 0.058 with significant difference between 2 stocks. Morphometric analysis showed significant difference between two stocks in 8 characteristics. Meristic characters was without significant difference in broodstock groups. Eyed percentage for french broodstock calculated zero and deleted. Fertilization rate (100-0), the eyed percentage (98- 0), The hatch rate (98-0), the average fecundity 4114.708, the average eggs size 4.88 mm, Survival in the first three months 19-73% calculated for Iranian broodstocks. Considering the quality of eggs and larvae at different stages and selection between the different family and the within family remained 10 treatments and are kept as future broodstocks. The relationship between fecundity - egg size, fecundity - weight , fecundity - length, egg size- weight was performed using regression. The results showed that Fecundity was influenced more by weight and productive length. The research is beginning to ID the broodstock in our country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present research, a total of 207 pieces of fish from 25 sampling stations in Gilan Province coasts in the years 2001-2002 were biologically studied in terms of their growth and development, reproduction and feeding. The average length and weight of the fishes are increased, as they get older. The highest index of length and weight growth is observed in the years 1 to 2. As the age increases, gradient of length and weight growth diagrams decrease. In studying the relation between length and weight, it was observed that proportionate to the total length, the weight is increased progressively. The fatness coefficient index in the initial years of life and prior to maturity is higher than the post maturity period. As the age increases, the decrease of this index is observable. The fatness coefficient index rate is directly related to index of fullness. The highest Gonadosomatic Index is seen in the months of June and July, i.e. at the times of spawning; and the lowest index rate is observed in the months of November and December. The appropriate temperature for reproduction of these species is from 18 to 22 degree centigrade. The Gonadosomatic Index is higher in spring and summer seasons as compared with autumn and winter. Besides, as the fishes become aged, the amount of the said index increases in a manner that the gradient of it in the years to maturity is less than the maturity time and thereafter. Sexual maturity stages in different months are directly related to Gonadosomatic index, and increase as the age increases. The sexual ratio of male fishes to the female fishes in terms of number is plus one prior to maturity; about one at the time of maturity and minus after maturity. In general the frequency of male fishes as compared with female fishes in all group ages is approximately two times. The fecundity mean, and the diameter and the rate of eggs will substantially increase, as the Gonadosomatic index rises. The maturity age in the male fishes is 3 to 4 years and in female fishes is 4 to 5 years. The spawning of this species in rivers occurs repeatedly and in different time intervals, and do not take place once (Asyncronous). The Gastrosomatic index is directly related to index of fullness and will decrease, as the age increases. The index of fullness is relatively the months of April and May. The underlying reason is the need of the fishes to energy for reproduction. As the spawning time commences, the index of fullness moves down and the downward direction continues. After spa g mg and reduction of the volume of energy in the body, the index of fullness rises, and it will be substantially high until the beginning of fall. In fall and winter as it gets cold, the index of fullness moves downward and the body fat deposits are used. A correlation is shown between the changes in vacuity index and fullness indices. This means that as the fullness index rises, the vacuity index decreases, and vice versa. The Hepatosomatic index prior to the reproduction is at the highest amount and after spawning is at the lowest. No correlation is observed between the fullness and Hepatosomatic indices. In other words reproduction is an inherent and instinct originated matter; and its cycle goes on, alternately and in an orderly manner, upon completion of germinal cells, even when it coincides with reduction or stoppage of somatic cell growth. The rising trend of Hepatosomatic starts in August and will continue until the next July. The volume of fat around digestive tract is severely reduced in early spring and this trend will reach its apex in summer season. In the cold seasons, i.e. the fall and winter, the accumulation of fat around digestive tract increases. Consequently, a meaningful and inverse relation is observed between index of fullness, also the progress of sexual maturity stages and the volume of fat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).