3 resultados para bootstrapping
em Aquatic Commons
Resumo:
Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.
Resumo:
Vibrio vulnificus is a gram-negative pathogenic bacterium endemic to coastal waters worldwide, and a leading cause of seafood related mortality. Because of human health concerns, understanding the ecology of the species and potentially predicting its distribution is of great importance. We evaluated and applied a previously published qPCR assay to water samples (n = 235) collected from the main-stem of the Chesapeake Bay (2007 – 2008) by Maryland and Virginia State water quality monitoring programs. Results confirmed strong relationships between the likelihood of Vibrio vulnificus presence and both temperature and salinity that were used to develop a logistic regression model. The habitat model demonstrated a high degree of concordance (93%), and robustness as subsequent bootstrapping (n=1000) did not change model output (P > 0.05). We forced this empirical habitat model with temperature and salinity predictions generated by a regional hydrodynamic modeling system to demonstrate its utility in future pathogen forecasting efforts in the Chesapeake Bay.
Resumo:
Adaptive cluster sampling (ACS) has been the subject of many publications about sampling aggregated populations. Choosing the criterion value that invokes ACS remains problematic. We address this problem using data from a June 1999 ACS survey for rockfish, specifically for Pacific ocean perch (Sebastes alutus), and for shortraker (S. borealis) and rougheye (S. aleutianus) rockfish combined. Our hypotheses were that ACS would outperform simple random sampling (SRS) for S. alutus and would be more applicable for S. alutus than for S. borealis and S. aleutianus combined because populations of S. alutus are thought to be more aggregated. Three alternatives for choosing a criterion value were investigated. We chose the strategy that yielded the lowest criterion value and simulated the higher criterion values with the data after the survey. Systematic random sampling was conducted across the whole area to determine the lowest criterion value, and then a new systematic random sample was taken with adaptive sampling around each tow that exceeded the fixed criterion value. ACS yielded gains in precision (SE) over SRS. Bootstrapping showed that the distribution of an ACS estimator is approximately normal, whereas the SRS sampling distribution is skewed and bimodal. Simulation showed that a higher criterion value results in substantially less adaptive sampling with little tradeoff in precision. When time-efficiency was examined, ACS quickly added more samples, but sampling edge units caused this efficiency to be lessened, and the gain in efficiency did not measurably affect our conclusions. ACS for S. alutus should be incorporated with a fixed criterion value equal to the top quartile of previously collected survey data. The second hypothesis was confirmed because ACS did not prove to be more effective for S. borealis-S. aleutianus. Overall, our ACS results were not as optimistic as those previously published in the literature, and indicate the need for further study of this sampling method.