64 resultados para birds of prey
em Aquatic Commons
Resumo:
Many highly exploited ecosystems are managed on the basis of single-species demographic information. This management approach can exacerbate tensions among stakeholders with competing interests who in turn rely on data with notoriously high variance. In this case study, an application of diet and dive survey data was used to describe the prey preference of lingcod (Ophiodon elongatus) in a predictive framework on nearshore reefs off Oregon. The lingcod is a large, fast-growing generalist predator of invertebrates and fishes. In response to concerns that lingcod may significantly reduce diminished populations of rockfishes (Sebastes spp.), the diets of 375 lingcod on nearshore reefs along the Oregon Coast were compared with estimates of relative prey availability from dive surveys. In contrast to the transient pelagic fishes that comprised 46% of lingcod diet by number, rockfishes comprised at most 4.7% of prey items. Rockfishes were the most abundant potential prey observed in dive surveys, yet they were the least preferred. Ecosystem-based fisheries management (EBFM) requires information about primary trophic relationships, as well as relative abundance and distribution data for multiple species. This study shows that, at a minimum, predation relative to prey availability must be considered before predator effects can be understood in a management context.
Resumo:
The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.
Resumo:
The effects of seasonal and regional differences in diet composition on the food requirements of Steller sea lions (Eumetopias jubatus) were estimated by using a bioenergetic model. The model considered differences in the energy density of the prey, and differences in digestive efficiency and the heat increment of feeding of different diets. The model predicted that Steller sea lions in southeast Alaska required 45–60% more food per day in early spring (March) than after the breeding season in late summer (August) because of seasonal changes in the energy density of the diets (along with seasonal changes in energy requirements). The southeast Alaska population, at 23,000 (±1660 SD) animals (all ages), consumed an estimated 140,000 (±27,800) t of prey in 1998. In contrast, we estimated that the 51,000 (±3680) animals making up the western Alaska population in the Gulf of Alaska and Aleutian Islands consumed just over twice this amount (303,000 [±57,500] t). In terms of biomass removed in 1998 from Alaskan waters, we estimated that Steller sea lions accounted for about 5% of the natural mortality of gadids (pollock and cod) and up to 75% of the natural mortality of hexagrammids (adult Atka mackerel). These two groups of species were consumed in higher amounts than any other. The predicted average daily food requirement per individual ranged from 16 (±2.8) to 20 (±3.6) kg (all ages combined). Per capita food requirements differed by as much as 24% between regions of Alaska depending on the relative amounts of low–energy-density prey (e.g. gadids) versus high–energy-density prey (e.g. forage fish and salmon) consumed. Estimated requirements were highest in regions where Steller sea lions consumed higher proportions of low–energy-density prey and experienced the highest rates of population decline
Resumo:
Satiation amount, satiation time and handling time of Anabas testudineus (Bloch), an air breathing predatory fish was experimentally estimated using guppy (Lebistes reticulatus) as prey. Weight of the fish and satiation time influenced prey handling time. As satiation time is related to the level of hunger, level of hunger was found to influence handling time of prey.
Resumo:
In the ocean commercial troll and recreational salmon fishery in Monterey Bay California, California sea lions (Zalophus califomianus) will swim near or follow fishing boats and will depredate fish once hooked. The objectives of the study were to determine the percentage of salmon taken by pinnipeds in commercial and recreational fisheries, identify relative importance of prey items seasonally consumed by sea lions, and determine the proportion of salmonids in the sea lion diet on a seasonal basis. From April 1997 through September 1998, 1041 hours of onboard and dockside surveys of the commercial and recreational salmon fisheries were conducted at the three ports in Monterey Bay, California. Sea lions depreadated 7.9 % of the fish hooked in the commercial fishery in 1997 and 28.6 % in 1998,8.4 % (1997) and 18.3 % (1998) of the CPFV fishery, and 15.6 % (1997) and 17.5 % (1998) of the private skiff fishery. Increased depredation rates in both the commercial and recreational salmon fisheries in 1998 were most likely the result of the large EI Nino Southern Oscillation event that occurred in 1997-1998 during which a greater number of sea lions were present in central California. Prey hardparts identified in sea lion fecal samples collected in Monterey Bay indicated that schooling fishes were the predominant prey fish species, such as market squid (Loligo opalescens), Pacific sardine (Sardinops caeruleus), northern anchovy (Engraulis mordax), and rockfish (Sebastes sp.). Sea lions consumed similar prey species in the summer and fall 1997, winter 1997-98, and spring 1998 (PSI> 70.0) with market squid and northern anchovy being the dominant prey species. However, prey composition changed significantly during the summer 1998 and fall 1998 (PSI < 46.0) because of the increased importance of sardine and rockfish in the diet and the decreased importance of market squid. This report does not intend to imply that salmonids are not a prey species for pinnipeds in the Monterey Bay region, but highlights the difficulties encountered in establishing the role of salmonids in the pinniped diet when analyzing fecal samples. (PDF contains 38 pages).
Resumo:
The migratory population of striped bass (Morone saxatilis) (>400 mm total length[TL]) spends winter in the Atlantic Ocean off the Virginia and North Carolina coasts of the United States. Information on trophic dynamics for these large adults during winter is limited. Feeding habits and prey were described from stomach contents of 1154 striped bass ranging from 373 to 1250 mm TL, collected from trawls during winters of 1994-96, 2000, and 2002-03, and from the recreational fishery during 2005-07. Nineteen prey species were present in the diet. Overall, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli) dominated the diet by boimass (67.9%) and numerically (68.6%). The percent biomass of Atlantic menhaden during 1994-2003 to 87.0% during 2005-07. Demersal fish species such as Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus) represented <15% of the diet biomass, whereas alosines (Alosa spp.) were rarely observed. Invertebrates were least important, contributing <1.0% by biomass and numerically. Striped bass are capable of feeding on a wide range of prey sizes (2% to 43% of their total length). This study outlines the importance of clupeoid fishes to striped bass winter production and also shows that predation may be exerting pressure on one of their dominant prey, the Atlantic menhaden.
Resumo:
ENGLISH: Increments in otoliths (sagittae) were examined, using light and scanning electron microscopy, to determine ages and estimate growth rates of larval and early-juvenile black skipjack, Euthynnus lineatus. Larvae and juveniles were collected between 1987 and 1989 from coastal waters of Panama in the eastern Pacific Ocean. Results from a laboratory experiment indicated that immersion for 6 and 12 hours in a 200 mg/L solution of tetracycline hydrochloride adequately marks otoliths and that increments are formed daily in the sagittae of postflexion larvae and early juveniles. Further, survival rates of tetracycline-treated fish were not significantly different from those of control fish. Growth rates were derived from length-age relationships of 218 field-collected specimens ranging in size from 5.7 to 20.3 mm SL. A growth rate of 0.70 mm/d was estimated from the weighted regression of standard length on age for all specimens. This rate lies within the range reported for larvae and early juveniles of other species of subtropical and tropical scombrids. Growth rates of postflexion larvae and early juveniles were not significantly different between the rainy season in July-August 1988 and the dry, upwelling season in January-February 1989. Growth was, however, significantly more variable for older individuals in July-August than in January-February, and may correspond, in part, to seasonal patchiness of prey. The growth rates of the otoliths relative to fish length were also not significantly different between seasons; however, the otoliths were larger relative to the lengths of fish collected in the rainy season, which may reflect slower growth during earlier larval stages. SPANISH: Se examinaron incrementos en otolitos (ságitas), usando microscopia de luz y de barrido electrónico, a fin de determinar la edad y estimar las tasas de crecimiento de barriletes negros, Euthynnus lineatus, larvales y juveniles tempranos. Entre 1987 y 1989 se capturaron larvas y juveniles en las aguas costeras de Panamá en el Océano Pacífico oriental. Los resultados de un experimento de laboratorio indicaron que una inmersión de 6 a 12 horas de duración en una solución de 200 mg/L de hidrocloro de tetraciclina marca los otolitos adecuadamente y que los incrementos se forman a diario en las ságitas de larvas en postflexión y juveniles tempranos. Además, las tasas de supervivencia de los peces tratados con tetraciclina no fueron significativamente diferentes a aquellas de los peces de control. Se calcularon las tasas de crecimiento a partir de las relaciones de talla-edad de 218 especímenes de TE entre 5.7 y 20.3 mm capturados en el mar. Se estimó.una tasa de crecimiento de 0.70 mm/día a partir de la regresión ponderada de talla estándar sobre edad para todos los especímenes. Esta tasa cae dentro del rango reportado para larvas y juveniles tempranos de otras especies de escómbridos subtropicales y tropicales. Las tasas de crecimiento de larvas en postflexión y juveniles tempranos no fueron significativamente diferentes entre la temporada de lluvias en julio-agosto de 1988 y la temporada de sequía y afloramiento en enero-febrero de 1989. Sin emoargo, el crecimiento fue significativamente más variable para los individuos de mayor edad en julio-agosto que en enero-febrero, y quizás corresponda parcialmente a la irregularidad temporal de la abundancia de presas. Las tasas de crecimiento de los otolitos en relación a la talla de los peces tampoco fueron significativamente diferentes entre temporadas; sin embargo, los otolitos eran más grandes en relación a la talla en peces capturados en la temporada de lluvias, lo cual podría reflejar crecimiento más lento durante las etapas larvales más tempranas. (PDF contains 42 pages.)
Resumo:
This article relates the experience of creating and developing a fishery in southern England. The fishery was made from a small stream which dries up from time to time, and marks the boundary between a Sussex farm and a large coniferous forest. The preparation of the site and creation of the impoundment are described, and early experiences outlined. The fishery was expanded in later years, as a result of its popularity, and records of its use by anglers are illustrated. The performance of the fishery is measured in terms of "good fish" (more than 675 g) taken, and their number has increased from 81 in 1984 to 226 in 1991. The aquatic plants, invertebrates, and birds of the fishery are discussed, as are the natural predators of the fish.
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
The small-spotted catshark (Scyliorhinus canicula) (Linnaeus, 1758) and the longnose spurdog (Squalus blainville) (Risso, 1826) are two species occurring in the European and western African continental shelves with a wide geographical distribution. In this study, the diet of S. blainville and S. canicula off the Portuguese western Atlantic coast was investigated in 2006 by collecting monthly samples of these two species from local fishing vessels. In the stomachs of both species, crustaceans and teleosts were the dominant prey items, and molluscs, polychaetes, echinoderms, and sipunculids were found in lower abundance. In S. canicula, urochordate and chondrichthyan species were also observed in stomachs and were classified as accidental prey items. Scyliorhinus canicula consumed a broader group of prey items than did S. blainville. A significant diet overlap was observed, despite both species occupying different depth ranges over the continental shelf. Scyliorhinus canicula exhibited a consistency in diet composition among seasons, sexes, and maturity stages. Nonetheless, for both adults and juveniles, an increase in relative abundance of teleosts in the diet was observed in the spring and summer. This study provides evidence of the importance of S. canicula and S. blainville as benthic and pelagic predators along the western Atlantic coast.
Resumo:
Atlantic herring (Clupea harengus) is an ecologically and economically valuable species in many food webs, yet surprisingly little is known about the variation in the nutritional quality of these fish. Atlantic herring collected from 2005 through 2008 from the Bay of Fundy, Canada, were examined for variability in their nutritional quality by using total lipid content (n=889) and fatty acid composition (n=551) as proxies for nutritional value. A significant positive relationship was found between fish length and total lipid content. Atlantic herring also had significantly different fatty acid signatures by age. Fish from 2005 had significantly lower total lipid content than fish from 2006 through 2008, and all years had significantly different fatty acid signatures. Summer fish were significantly fatter than winter fish and had significantly different fatty acid signatures. For all comparisons (ontogenetic, annual, and seasonal) percent concentrations of omega-3, -6, and long-chain monounsaturated fatty acids were the most important for distinguishing between the fatty acid signatures of fish. This study underscores the importance of quantifying variation in prey quality synoptically with prey quantity in food webs over ontogenetic and temporal scales when evaluating the effect of prey nutritional quality on predators and on modeling trophic dynamics.
Resumo:
Knowing where pinnipeds forage is vital to managing and protecting their populations, and for assessing potential interactions with fisheries. We assessed the spatial relationship between the seasonal distribution of Pacific harbor seals (Phoca vitulina richardii) outfitted with satellite transmitters and the seasonal distributions of potential harbor seal prey species in San Francisco Bay, California. Pearson’s correlation coefficients were calculated between the number of harbor seal locations in an area of the San Francisco Bay and the abundance of specific prey species in the same area. The influence of scale on the analyses was assessed by varying the scale of analysis from 1 to 10 km. There was consistency in the prey species targeted by harbor seals year-round, although there were seasonal differences between the most important prey species. The highest correlations between harbor seals and their prey were found for seasonally abundant benthic species, located within about 10 km of the primary haul-out site. Probable foraging habitat for harbor seals was identified, based on areas with high abundances of prey species that were strongly correlated with harbor seal distribution. With comparable local data inputs, this approach has potential application to pinniped management in other areas, and to decisions about the location of marine reserves designed to protect these species.
Resumo:
Quantification of predator-prey body size relationships is essential to understanding trophic dynamics in marine ecosystems. Prey lengths recovered from predator stomachs help determine the sizes of prey most influential in supporting predator growth and to ascertain size-specific effects of natural mortality on prey populations (Bax, 1998; Claessen et al., 2002). Estimating prey size from stomach content analyses is often hindered because of the degradation of tissue and bone by digestion. Furthermore, reconstruction of original prey size from digested remains requires species-specific reference materials and techniques. A number of diagnostic guides for freshwater (Hansel et al., 1988) and marine (Watt et al., 1997; Granadeiro and Silva, 2000) prey species exist; however they are limited to specific geographic regions (Smale et al., 1995; Gosztonyi et al., 2007). Predictive equations for reconstructing original prey size from diagnostic bones in marine fishes have been developed in several studies of piscivorous fishes of the Northwest Atlantic Ocean (Scharf et al., 1998; Wood, 2005). Conversely, morphometric relationships for cephalopods in this region are scarce despite their importance to a wide range of predators, such as finfish (Bowman et al., 2000 ; Staudinger, 2006), elasmobranchs (Kohler, 1987), and marine mammals (Gannon et al., 1997; Williams, 1999).
Resumo:
Data on the trophic dynamics of fishes are needed for management of ecosystems such as Chesapeake Bay. Summer flounder (Paralichthys dentatus) are an abundant seasonal resident of the bay and have the potential to impact foodweb dynamics. Analyses of diet data for late juvenile and adult summer flounder collected from 2002−2006 in Chesapeake Bay were conducted to characterize the role of this flatfish in this estuary and to contribute to our understanding of summer flounder trophic dynamics throughout its range. Despite the diversity of prey, nearly half of the diet comprised mysid shrimp (Neomysis spp.) and bay anchovy (Anchoa mitchilli). Ontogenetic differences in diet and an increase in diet diversity with increasing fish size were documented. Temporal (inter- and intra-annual) changes were also detected, as well as trends in diet reflecting peaks in abundance and diversity of prey. The preponderance of fishes in the diet of summer flounder indicates that this species is an important piscivorous predator in Chesapeake Bay.