11 resultados para barrier membrane
em Aquatic Commons
Resumo:
This document lists the undesirable effects of water hyacinth (Eichhornia crassipes) on fisheries in Lake Kainji (Nigeria) and the integrated Water Hyacinth Control Programme in its ongoing fisheries management and development activities on the lake. Special regard is given to the design, construction and installation of a water hyacinth barrier across the River Niger. (PDF contains 44 pages)
Resumo:
Barrier islands are ecosystems that border coastal shorelines and form a protective barrier between continental shorelines and the wave action originating offshore. In addition to forming and maintaining an array of coastal and estuarine habitats of ecological and economic importance, barrier island coastlines also include some of the greatest concentrations of human populations and accompanying anthropogenic development in the world. These islands have an extremely dynamic nature whereby major changes in geomorphology and hydrology can occur over short time periods (i.e. days, hours) in response to extreme episodic storm events such as hurricanes and northeasters. The native vegetation and geological stability of these ecosystems are tightly coupled with one another and are vulnerable to storm-related erosion events, particularly when also disturbed by anthropogenic development. (PDF contains 4 pages)
Resumo:
The original method, proposed by Yentsch (1957), of determination of chlorophyll directly in the cells, attracts attention by its simplicity. In order to measure the content of chlorophyll by this method, a determined volume of suspension of algae is filtered through a membrane filter. The latter is dried a little, clarified by immersion oil, clamped between two glasses, and spectrophotometrized. Extinction is read off at , wavelengths equal to 670 millimicrons (around the maximum absorption of chlorophyll a in the cell) and 750 millimicrons (correction for non- specific absorption and dispersion of light by particles of the preparation). The method of Yentsch was employed by the authors for determination of chlorophyll-a in samples of phytoplankton. They conclude that in spite of the simplicity and convenience of determination the method must be applied sufficiently carefully. It is more suitable for analysis of cultures of algae, where, non-specific absorption of light is insignificant.
Resumo:
We investigated the use of otolith morphology to indicate the stock structure of an exploited serranid coral reef fish, Plectropomus leopardus, on the Great Barrier Reef (GBR), Australia. Otoliths were measured by traditional one-and two-dimensional measures (otolith length, width, area, perimeter, circularity, and rectangularity), as well as by Fourier analysis to capture the finer details of otolith shape. Variables were compared among four regions of the GBR separated by hundreds of kilometers, as well as among three reefs within each region, hundreds of meters to tens of kilometers apart. The temporal stability in otolith structure was examined by comparing two cohorts of fully recruited four-year-old P. leopardus collected two years before and two years after a signif icant disturbance in the southern parts of the GBR caused by a large tropical cyclone in March 1997. Results indicated the presence of at least two stocks of P. leopardus, although the structure of each stock varied depending on the cohort considered. The results highlight the importance of incorporating data from several years in studies using otolith morphology to discriminate temporary and possibly misleading signals from those that indicate persistent spatial structure in stocks. We conclude that otolith morphology can be used as an initial step to direct further research on groups of P. leopardus that have lived at least a part of their life in different environments.
Resumo:
Age-based analyses were used to demonstrate consistent differences in growth between populations of Acanthochromis polyacanthus (Pomacentridae) collected at three distance strata across the continental shelf (inner, mid-, and outer shelf) of the central Great Barrier Reef (three reefs per distance stratum). Fish had significantly greater maximum lengths with increasing distance from shore, but fish from all distances reached approximately the same maximum age, indicating that growth is more rapid for fish found on outer-shelf reefs. Only one fish collected from inner-shelf reefs reached >100 mm SL, whereas 38−67% of fish collected from the outer shelf were >100 mm SL. The largest age class of adult-size fish collected from inner and mid-shelf locations comprised 3−4 year-olds, but shifted to 2-year-olds on outer-shelf reefs. Mortality schedules (Z and S) were similar irrespective of shelf position (inner shelf: 0.51 and 60.0%; mid-shelf: 0.48 and 61.8%; outer shelf: 0.43 and 65.1%, respectively). Age validation of captive fish indicated that growth increments are deposited annually, between the end of winter and early spring. The observed cross-shelf patterns in adult sizes and growth were unlikely to be a result of genetic differences between sample populations because all fish collected showed the same color pattern. It is likely that cross-shelf variation in quality and quantity of food, as well as in turbidity, are factors that contribute to the observed patterns of growth. Similar patterns of cross-shelf mortality indicate that predation rates varied little across the shelf. Our study cautions against pooling demographic parameters on broad spatial scales without consideration of the potential for cross-shelf variabil