24 resultados para atmospheric particle
em Aquatic Commons
Resumo:
This report presents oceanographic data supporting the detailed chemical studies in the VERTEX Particle Interceptor Trap (PIT) experiment off the central California coast. Prior to the deployment of the PITs, an oceanographic survey of the intended study area was made on R/V CAYUSE from 17 to 21 August 1980. During this cruise, twenty CTD stations (Fig. 1) were occupied in a grid centered about the PIT site selected earlier based on archival oceanographic data. During the second leg of the VERTEX experiment from 25 August to 3 September, CTO profiles were taken as time permitted. In addition, a short survey near the PITs was made on 2 September. The intent of the pre-deployment cruise was to obtain data characterizing the vertical and horizontal variability of physical and chemical properties and to map the geostrophic flow field. Toward this end, vertical profiles of salinity, temperature and dissolved oxygen were made using a Plessey 9040 CTOa profiler. Considerable effort was expended to make vertical beam attenuation profiles to
Resumo:
In this report, we present oceanographic results from VERTEX 3 Particle Interceptor Trap (PIT) experiment conducted off the western-coast of Mexico during October to November 1982. The oceanographic data presented here were obtained during three cruise legs by Moss Landing Marine Laboratory scientists aboard R/V Cayuse while the detailed chemical studies were done by other scientists aboard R/V Wecoma. Only the oceanographic data will be presented in this report. (PDF contains 82 pages)
Resumo:
Phytoplankton counts made under the light microscope were compared to counts using an electronic dimensional particle counter. Counts were made on a monthly basis, on water samples taken from one station in the Sanyati Basin. Neither total particle numbers nor total particle volume compare closely with phytoplankton numbers. Total particle numbers were of the order of one and a half to two times greater than the phytoplankton numbers.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The annual cycle and non-seasonal variability of streamflow over a network of stations in western North America and Hawaii is studied in terms of atmospheric forcing elements. The phase lag between the annual cycle of streamflow and precipitation varies considerably over this network, as does the persistence of monthly streamflow anomalies. This lag effect appears to be largely a function of the relative amount of snow laid down in a particular basin. In addition to the rather strong annual cycle that exists in mean streamflow and its variance at most of the stations, there is also a distinct annual cycle in the autocorrelation of streamflow anomalies that is related to the interplay between the temperature and precipitation annual cycles; of particular importance is the existence of stored water in the form of a snow pack.
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An analytical system was designed and constructed for the rapid and accurate shipboard measurement of anthropogenic chlorofluoromethanes in seawater and in air, using electron capture gas chrometography. The distribution of these compounds in the marine atmosphere and the water column in the Greenland and Norwegian seas were studied during February and March, 1982. The compounds, dissolved in the ocean from the atmosphere, can be used as tracers of subsurface ocean circulation and mixing processes.
Resumo:
This paper is an attempt to provide a summary review of conclusions from previous studies on this subject. They have been organized under the following subject headings: Conceptualization of the greenhouse effect; The climatic effect of doubled carbon dioxide; Interpretation of the climatic record; Diagnosis of apparent and possible model deficiencies; The paleoclimatic record.
Resumo:
Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs.
Resumo:
Particle flux in the ocean reflects ongoing biological and geological processes operating under the influence of the local environment. Estimation of this particle flux through sediment trap deployment is constrained by sampler accuracy, particle preservation, and swimmer distortion. Interpretation of specific particle flux is further constrained by indeterminate particle dispersion and the absence of a clear understanding of the sedimentary consequences of ecosystem activity. Nevertheless, the continuous and integrative properties of the particle trap measure, along with the logistic advantage of a long-term moored sampler, provide a set of strategic advantages that appear analogous to those underlying conventional oceanographic survey programs. Emboldened by this perception, several stations along the coast of Southern California and Mexico have been targeted as coastal ocean flux sites (COFS).
Resumo:
We describe a preliminary investigation into large-scale atmospheric and surface moisture variations over North America. We compare large-scale hydrologic budgets in the Los Alamos general circulation model (GCM) to observed precipitation and vertically integrated atmospheric moisture fluxes derived from the National Meteorological Center's operational analyses. THe GCM faithfully simulates the integrated flux divergence and P-E differences. However, the integrated moisture content is too low, and precipitation and evaporation are too high. The model produces summertime soil moisture dryness, which supports previous studies showing increased droughts under warmer conditions.