5 resultados para antenatal distress
em Aquatic Commons
Resumo:
The impact of acute exposure of Gammalin 20 (an organochlorine pesticide) was investigated in a static bioassay test over a 96-(4-day) period on the fingerlings of Chrysichthys nigrodigitatus (lacepede). The 96-hLC sub(50) of Gammalin 20 was determined as 2.31 Ug/l with lower and upper limits of toxicities as 2.10 and 4.44 Ug/l respectively. At higher concentrations, the colour of the exposed fish became darker, opercular movement slowed down while pigmentation pattern increased and respiratory distress was observed, erratic swimming, tonic convulsion and no response to gentle prodding, and finally death. The implications of these results were discussed with a suggestion of the total ban on the use of Gammalin 20 in capture fisheries due to its harmful and persistence nature in the aquatic environment
Resumo:
Clarias gariepinus fingerlings were exposed 96 hours under laboratory conditions using static bioassays with continuous aeration to determine acute toxicity of Datura innoxia root extract. The LC sub(50) of the exposed fingerlings was 128.83 mg/L. The fish exhibited loss of balance, respiratory distress and swam erratically just prior to death
Resumo:
The acute toxicity of Linear Alkylbenzene Sulphonate (LAS) detergent to Clarias gariepinus fingerlings was investigated using static bioassays and continous aeration over a period of 96h. The 96h LC sub(50) was determined as 24.00mgL super(-1). During the exposure period, the test fish exhibited several behavioural changes before death such as restlessness, rapid swimming, loss of balance, respiratory distress and haemorrhaging of gill filaments amongst others. Opercula ventilation rate as well as visual examination of dead fish indicates lethal effects of the detergent on the fish. Water quality examination showed increase in pH from 6.55 to the alkaline, death point of 10.55. There was also a remarkabel rise of alkalinity from 20.00mgL super(-1) to 52.50mgL super(-1)
Resumo:
With the southern New England lobster fishery in distress, lobster fishermen have focused more effort toward harvesting channeled whelk (Busycotypus canaliculatus). However, minimal research has been conducted on the life history and growth rates of channeled whelk. Melongenid whelks generally grow slowly and mature late in life, a characteristic that can make them vulnerable to overfishing as fishing pressure increases. We sampled channeled whelk from Buzzards Bay, Massachusetts, in August 2010 and in July 2011, studied their gonad development by histology, and aged them by examining opercula. Males had a slower growth rate and a lower maximum size than females. Male whelk reached 50% maturity (SM50) at 115.5 mm shell length (SL) and at the age of 6.9 years. Female whelk reached SM50 at 155.3 mm SL and at the age of 8.6 years. With a minimum size limit of 69.9 mm (2.75 in) in shell width, males entered the fishery at 7.5 years, a few months after SM50, but females entered the fishery at 6.3 years, approximately 2 years before SM50. Increased fishing pressure combined with slow growth rates and the inability to reproduce before being harvested can easily constrain the long-term viability of the channeled whelk fishery in Massachusetts.
Resumo:
Comparative impact of chloral hydrate anaesthesia on the metabolic rate of Indian major carp Labeo rohita and larvivorous fish Poecilia reticulata was assessed. Observation on the Oxygen Consumption Rate (OCR) revealed that in common guppies OCR was substantially low (1.105 and 1.097 mg/g/hr) at 0.1 and 0.25 g/l concentrations of chloral hydrate as against OCR of 1.487 mg/g/hr in the control. Fry of L. rohita in group showed lower metabolic rates in the control as well as treated conditions as compared to the individuals of this fish. This may be due to sympathetic psychophysiological reflex of grouped fish. Higher dose of chloral hydrate (0.25 g/l) also caused higher OCR probably due to distress. Application of chloral hydrate also favoured lesser release of metabolic wastes (ammonia and carbon dioxide). There was significant positive correlation between time and oxygen consumption, whereas, for time and OCR this relationship was negative. Regression of chloral hydrate doses for OCR and time has also been calculated.