8 resultados para alfalfa silage
em Aquatic Commons
Resumo:
An experiment was undertaken in which silver bellies (Leiognathus splendens) of different quality were used to produce silages using different concentrations of hydrochloric acid and formic acid. The quality and storage life of the various preparations are reported. Silages which keep for at least 30 days can be produced from silver belly held for 3 or 12 hours at 28°C by: 1) reducing the pH by addition of hydrochloric acid; 2) adding 0.5% formic acid and reducing the pH to 3.5 with hydrochloric acid; or 3) adding 2.5% formic acid.
Resumo:
An experiment was undertaken to determine from which part of silver belly (Leiognathus splendens) carcasses originate the autolytic enzymes responsible for liquefaction of silage. Findings show that it is important to leave head and viscera present in order to get a satisfactory liquefaction in silage prepared from silver belly using 3.5% formic acid. The storage life of silage produced from various parts of the fish carcasses is also discussed.
Resumo:
An investigation was undertaken on the production of dried products from silver belly (Leiognathus splendens) silage mixed with plant filter materials. Silages produced using hydrochloric acid and/or formic acid when mixed with rice bran or maize meal and dried, yielded powders having an acceptable appearance and a pleasant odour, which are suitable for use in compounded chicken feeds.
Resumo:
Economic aspects of producing liquid and dried silage from silver belly (Leiognathus splendens) in Sri Lanka are considered. A discounted cash flow analysis for the production of a dried fish silage/rice bran product suitable for use in compounded poultry feeds shows that the internal rate of return for a 10-year project would be between 34-77% and for a 5-year project between 26-73%. Thus it is concluded that the project would be extremely profitable.
Resumo:
Improvement in the nutritive value of soybean meal was investigated by Co-ensiling it with underutilized trash fish discards (gizzard shad)at different proportions. The following proportions of gizzard shad to soybean meal were used; (a) 100% gizzard shad + acid combination (b)80% gizzard shad +20% soybean meal & 10% WB (c) 60% gizzard shad + 40% soybean meal & 10% WB (d) 100% gizzard shad without acid combination. Co-ensiling was achieved by adding sufficient acid to produce a paste. Products were neutralized by addition of 2% (by weight) calcium hydroxide and drying was affected by freeze-drying.The dried silage products were stored at low temperatures. Products were analysed for proximate composition and amino acid composition.The amino acid composition and ration of essential amino acid. Non essential amino acid (EAA/NEAA) was used as index of nutritive quality. Also essential amino acid profile of the co-ensiled products were compared with essential amino acid requirement of some warmwater fish species to estimate their nutritive usefulness for these species
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
Fish ensilage for animal feed stuff was prepared from Jew fish (Pseudosciaena spp.) and Silver bellies (Leiognathus spp.) by fermentation with pure culture of Lactobacillus piantarum NCIB 6105. The precooked ensiled product gave better product of fish silage (high content of lactic acid, about 5%). Protein Nitrogen content ranged between 1.76 to 1.94%. During storage for one year, the Protein Nitrogen loss was not significant. The material can be used as a supplemental animal ration.
Resumo:
Three dry pelleted feeds incorporating fish meal, fish silage or a mixture of colocasia leaf powder and fish meal were formulated for use in carp culture. The diets formulated were tested for water stability and also for changes in their quality parameters over storage of three months. The different pellets showed satisfactory water stability. The variations recorded in the proximate composition during the period of storage did not bring about any drastic change in the overall keeping quality of the feeds. Therefore, the three formulated feeds are considered suitable for use in the culture of carps.