31 resultados para aerobic bacterium
em Aquatic Commons
Resumo:
Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp larvae, suppressed the activity of V. harveyi M3 and reduced mortality of P. monodon larvae in vivo.
Resumo:
The toxicity of xenobiotic in aquatic ecosystems is influenced by many factors such as ambient temperature, water hardness, pond soil type, etc. In the present study, it was observed that air temperature, water hardness and soil sediment have profound influence on the toxicity of deltamethrin to common carp fry (ay. length 3.5 ± 0.5 cm, ay. weight 0.58 ± 0.25 g); 96h LC(sub)50 values for common carp at 38.07 ± 2.20°C maximum and 27.86 ± 1.22°C minimum air temperature in soft and very hard water were 0.102 and 0.495 µg lˉ¹, respectively. This value had increased significantly to 2.37 and 3.02 µg at 30.55 ± 1.21°C maximum and 26.04 ± 0.61°C minimum air temperature, respectively. When sediment was included, 96h LC(sub)50 at 38.07°C maximum temperature in very hard water was 1.808 µg 1ˉ¹ and this had increased to 8.073 µg 1ˉ¹ when tested at 30.55°C maximum temperature. Due to the 7.5°C increase in maximum and 1.7°C in minimum temperature, toxicity increased significantly. Lower toxicity in very hard water in comparison to soft water may be due to the lower solubility of deltarnethrin and high level of calcium. Adsorption reaction of deltamethrin with clay, humus, FeOOH, MnOOH and particulate organic carbon, and complexation reaction with dissolved organic carbon were responsible for the lowered toxicity in the experiment with sediment. Exposure time had no significant effect on acute toxicity of deltamethrin.
Resumo:
Bacteriological examination of the gastrointestinal microflora of 2 freshwater cichlid fish species (Sarotherodon mossambicus and Tilapia nilotica ) was performed, resulting in the bacteria enumeration of total viable counts of 1.06x10⁷/g and 7.75x10⁷/g of gastro-bacteria intestinal tract plus contents (wet weight) respectively, by aerobic incubation at 30+1°C. The majority (78%) of the total gut isolates from both fish species was Gram positive mesophilic which is characteristic of the higher ambient temperature in the tropics. These isolates were fastidious in their nutritional requirements and together with the rest are isogenous to bacteria autochthonous to soil and water. The occurrence of such organisms is attributed to the feeding habits of these fish. The gastrointestinal bacteria isolated in this study are transient residents but not "indigenous" in these cichlid fish.
Resumo:
The effect of the physicochemical parameters of water and soil on the distribution of nitrogen-fixing bacteria and their nitrogen-fixing capacity was studied. Four species of nitrogen-fixing bacteria, e. g. Azotobacter chroococcum, A. vinelandii, A. beijerinckii and A. armeniacus, were recorded from water and soil samples of Mumbai coast. A higher number of bacterial populations were observed in sediment than in water samples. A positive correlation was observed between the dissolved organic matter and nitrogen fixing bacterial populations of water as well as between available phosphorus and the nitrogen-fixing bacteria of sediment. The nitrogen-fixing capacity of A. chroococcum was found to be 1.076 nmol C sub(2) H sub(4)/l/d and that of A. vinelandii was 0.965 nmol C sub(2) H sub(4)/l/d. Station 1 showed higher level of nitrogenase activity in comparison to other four stations.
Resumo:
A detailed bacteriological survey of the prawn canneries of Cochin area was carried out to study the nature and type of micro-organisms present in the factory environs and their role in causing contamination of the canned products. About 26% of the total of 1030 strains isolated was found to be gram positive spore-formers of the Bacillus type, the cooling water being their major source. Similar types of organisms formed the major group often met with in defective canned prawn samples picked up from the factories for examination, thus establishing a correlation between bacterial characteristics and load of cooling water and can contamination.
Resumo:
The influence of a fish gut bacterium Lactobacillus sp on the production of swordtail Xiphophorus helleri was studied for a period of one year. The Lactobacillus sp P21 produced bacteriocin-like inhibitory substance and exhibited wide spectrum of action against Aeromonas hydrophila, Bacillus spp, Pseudomonas spp and Citrobacter freundi in vitro. The growth performance of X. helleri reared in the presence of Lactobacillus P21 at 106/ml rearing water was better than the control. The total plate counts, total MRS agar counts and the counts of motile aeromonads, presumptive pseudomonads, lactose fermenters and lactose non-fermenters in the gut of probiotic group were comparatively low than the control. On day 60 the count of Lactobacillus sp P21 was observed to be log 5.28/g in the gut of X. helleri indicating colonization of this bacterium in the gastrointestinal tract. The fecundity of X. helleri was in the range of 9-134. On average, it produced from 39.42±18.72 fry/female in control group to 53.00±23.57 fry/female in probiotic group. The increase in average fecundity in probiotic group over the control group was about 25%. There existed significant difference between probiotic group and control in respect of average fecundity/female (p<0.02), average number of fry survived /female (p<0.006) and average number of fry dead/female (p<0.029). The results of the present study demonstrated that the rearing of X. helleri in probiotic-enriched water have growth inducing ability and favourably influenced the reproductive performance in terms of high fecundity, high fry survival, reduced fry mortality and reduced fry deformity.
Resumo:
The marine environment covers three quarters of the surface of the planet is estimated to be home to more than 80% of life and yet it remains largely unexplored. The rich diversity of marine flora and fauna and its adaptation to the harsh marine environment coupled with new developments in biotechnology, has opened up a new exciting vista for extraction of bioactive products of use in medicine. In this study inhibitory activity of a marine bacterium isolated from gut of ribbonfish was studied against pathogenic and environmental isolates of Vibrio species. This strain was identified as Pseudomonas stutzeri and it was found active against V. harveyi (luminescent bacteria), V. cholerae, V. alginolyticus, V. damseal, V. fluvialis. The antibacterial substance produced by Pseudomonas stutzeri was soluble in organic solvent and closely bound to external surface of bacterial cells. Reduction of the absorbance of the V. cholera cell suspension was observed when log phase cells of V. cholerae were treated with MIC and 4xMIC concentration of crude extract of Pseudomonas stutzeri.
Resumo:
This review discusses the processes involved in the decomposition of organic carbon derived initially from structural components of algae and other primary producers. It describes how groups of bacteria interact in time and space in a eutrophic lake. The relative importance of anaerobic and aerobic processes are discussed. The bulk of decomposition occurs within the sediment. The role of bacteria in the nitrogen cycle and the iron cycle, and in sulphate reduction and methanogenesis as the terminal metabolism of organic carbon are described.
Resumo:
In a small lake, intermittent destratification was installed after several other physico-chemical and physical in-lake therapy measures (phosphorus immobilization, permanent destratification) had been tested without great success. If an aerobic sediment-water interface can be maintained, intermittent destratification removes cyanobacteria and prevents optimal development of other members of the photoautotrophic plankton. During growing seasons, increasing abundances of small-bodied herbivores (Bosmina) and Daphnia may have accounted for relatively low phytoplankton biomass as well. Intermittent destratification is a very fast-working in-lake measure and seems to be applicable even in relatively shallow lakes (< 15 m), in which permanent destratification seems to be risky.
Resumo:
Protozoa feed on and regulate the abundance of most types of aquatic microorganisms, and they are an integral part of all aquatic microbial food webs. Being so small, aerobic protozoa thrive at low oxygen tensions, where they feed (largely unaffected by metazoan grazing) on the abundance of other microorganisms. In anaerobic environments, they are the only phagotrophic organisms, and they live in unique symbiotic consortia with methanogens, sulphate reducers and non-sulphur purple bacteria. The number of extant species of protozoa may be quite modest (the global number of ciliate species is estimated at 3000), and most of them probably have cosmopolitan distributions. This will undoubtedly make it easier to carry out further tasks, e.g. understanding the role of protozoan species diversity in the natural environment.
Resumo:
Size-related differences in power production and swim speed duration may contribute to the observed deficit of nursing calves in relation to lactating females killed in sets by tuna purse-seiners in the eastern tropical Pacific Ocean (ETP). Power production and swim-speed duration were estimated for northeastern spotted dolphins (Stenella attenuata), the species (neonate through adult) most often captured by the fishery. Power required by neonates to swim unassisted was 3.6 times that required of an adult to swim the same speed. Estimated unassisted burst speed for neonates is only about 3 m/s compared to about 6 m/s for adults. Estimated long-term sustainable speed is about 1 m/s for neonates compared to about 2.5 m/s for adults. Weight-specific power requirements decrease as dolphin calves increase in size, but power estimates for 2-year-old spotted dolphin calves are still about 40% higher than power estimates for adults, to maintain the same speed. These estimated differences between calves and adults are conservative because the calculations do not include accommodation for reduced aerobic capacity in dolphin calves compared to adults. Discrepancies in power production are probably ameliorated under normal circumstances by calves drafting next to their mothers, and by employing burst-coast or leap-burst-coast swimming, but the relatively high speeds associated with evasion behaviors during and after tuna sets likely diminish use of these energy-saving strategies by calves.
Resumo:
This is the Proposed Environmental Quality Standards (EQS) for Nonylphenol in Water produced by the Environment Agency in 1997. The report reviews the properties and uses of Nonylphenol, its fate, behaviour and reported concentrations in the environment, and critically assesses available data on its toxicity and bioaccumulation. The information is used to derive EQSs for the protection of fresh and saltwater life as well as for water abstracted to potable supply.Nonylphenol (NP) is used extensively in the production of other substances such as non-ionic ethoxylate surfactants. It is through the incomplete anaerobic biodegradation of these surfactants that most nonylphenol reaches the aquatic environment in effluents, e.g. from sewage treatment works and certain manufacturing operations. It was explicitly stated by the Environment Agency that the EQS was to be derived for NP and not Nonylphenol ethoxylates. However, since NP is unlikely to be present in the aquatic environment in the absence of other nonylphenol ethoxylate (NPE) degradation by-products, the toxicity, fate and behaviour of some of these (i.e. nonylphenol mono- and diethoxylates (NP1EO and NP2EO), mono- and di-nonylphenoxy carboxylic acids (NP1EC and NP2EC) have also been considered in this report. In the aquatic environment and during sewage treatment, NPEs are rapidly degraded to NP under aerobic conditions. NP may then be either fully mineralised or may be adsorbed to sediments. Since NP cannot be biodegraded under anaerobic conditions it can accumulate in sediments to high concentrations.
Resumo:
Vibrio vulnificus is a gram-negative pathogenic bacterium endemic to coastal waters worldwide, and a leading cause of seafood related mortality. Because of human health concerns, understanding the ecology of the species and potentially predicting its distribution is of great importance. We evaluated and applied a previously published qPCR assay to water samples (n = 235) collected from the main-stem of the Chesapeake Bay (2007 – 2008) by Maryland and Virginia State water quality monitoring programs. Results confirmed strong relationships between the likelihood of Vibrio vulnificus presence and both temperature and salinity that were used to develop a logistic regression model. The habitat model demonstrated a high degree of concordance (93%), and robustness as subsequent bootstrapping (n=1000) did not change model output (P > 0.05). We forced this empirical habitat model with temperature and salinity predictions generated by a regional hydrodynamic modeling system to demonstrate its utility in future pathogen forecasting efforts in the Chesapeake Bay.
Resumo:
Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10–20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.
Resumo:
A bacterial strain (D38BY) belonging to the family Flavobacteriaceae and antagonistic towards an algicidal bacterium (strain S03; Flavobacteriaceae) was isolated from a culture of the red tide dinoflagellate Karenia brevis that had previously been characterized as resistant to attack by strain S03. This antagonistic bacterium increased the survival time of otherwise susceptible, bacteriafree K. brevis cultures in a concentration-dependent manner during exposure to the algicidal bacterium. Experimental evidence indicated that direct contact was required in order for strain D38BY to inhibit the killing activity of algicidal strain S03. While further work is needed to determine its precise mode of action, the antagonistic properties of strain D38BY provide further evidence that the resistance or susceptibility of certain algal taxa to algicidal attack can be more a function of interactions within the ambient microbial community than an intrinsic property of the alga.