4 resultados para activity level

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative assays of trypsin, amylase and alkaline phosphatases were made in relation to age and food during the larval development of the Indian major carp Catla catla. The responses of all the test enzymes to age and food were identical. No enzymes were detected from the fertilized eggs. Detectable amount of enzymes were first observed in the first day old hatchlings. All the test enzymes in the group fed normal feed tended to rise gradually with advancement of age till day 22 after which an asymptotic level was attained. Absence of food throughout the rearing period caused the enzymatic activity of the larva to remain at the lowest level throughout. When starvation was followed by feeding, enzymatic activity in the former group was consistently higher than that of latter, suggesting that feeding activity was primarily responsible in maintaining the enzymatic activity of carp larva. The enzymatic activity of zooplankton was significantly higher than carp larva till day 6 to 12 after which the latter exceeded the former implying that carp larva during development utilizes the exogenous enzymes of zooplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study reports the behavioural and enzymological responses in a freshwater teleost fish, Cyprinus carpio var. communis, exposed to acute and sublethal toxicities of mercuric chloride. During acute treatment, significant behavioural changes like erratic swimming, excess mucus secretion and increased opercular movements were noticed. During acute and sublethal treatments, both aspartate amino transferase and alanine amino transferase activity increased throughout the study period. Comparing the treatments, the changes in enzyme activities were found high in acute treatment and all the values were significant at 5% level. The above findings can be used as non-specific biomarkers of environmental pollutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the physicochemical parameters of water and soil on the distribution of nitrogen-fixing bacteria and their nitrogen-fixing capacity was studied. Four species of nitrogen-fixing bacteria, e. g. Azotobacter chroococcum, A. vinelandii, A. beijerinckii and A. armeniacus, were recorded from water and soil samples of Mumbai coast. A higher number of bacterial populations were observed in sediment than in water samples. A positive correlation was observed between the dissolved organic matter and nitrogen fixing bacterial populations of water as well as between available phosphorus and the nitrogen-fixing bacteria of sediment. The nitrogen-fixing capacity of A. chroococcum was found to be 1.076 nmol C sub(2) H sub(4)/l/d and that of A. vinelandii was 0.965 nmol C sub(2) H sub(4)/l/d. Station 1 showed higher level of nitrogenase activity in comparison to other four stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arylsulfatase activity and growth were estimated in Escherichia coli, isolated from marine sediment. Maximum activity was observed at pH 6.6 whereas the maximum growth was at pH 5.6. 2x10ˉ³ M is the optimum substrate concentration for the highest level of enzyme activity/synthesis as well as for its growth. In general higher substrate concentration tended to inhibit enzyme activity and also the growth of the bacterium. Maximum growth and highest enzyme activity occurred at 29°C and above this temperature decreased both of them. Besides these, glucose, sodium sulfate, sodium chloride, sodium dihydrogen phosphate, sodium acetate and ammonium chloride at higher concentrations were inhibiting the enzyme activity and growth. Above 0.2% of glucose, 3% of sodium chloride, 10x10ˉ³ M concentrations of sodium sulfate, sodium dihydrogen phosphate, sodium acetate and ammonium chloride inhibited the activity and growth also. These observations indicate that, to generalize a compound as inhibitor or activator it is difficult since this depends not only on its concentration but also on the source of the enzyme when more than one type is encountered in nature.