15 resultados para active surveillance
em Aquatic Commons
Resumo:
Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. MFA training must comply with a variety of environmental laws, unless an exemption is granted by the appropriate authority. Marine mammals are protected under the Marine Mammal Protection Act (MMPA) and some under the Endangered Species Act (ESA). The training program must also comply with the National Environmental Policy Act (NEPA), and in some cases the Coastal Zone Management Act (CZMA). Each of these laws provides some exemption for certain federal actions. The Navy has invoked all of the exemptions to continue its sonar training exercises. Litigation challenging the MFA training off the coast of Southern California ended with a November 2008 U.S. Supreme Court decision. The Supreme Court said that the lower court had improperly favored the possibility of injuring marine animals over the importance of military readiness. The Supreme Court’s ruling allowed the training to continue without the limitations imposed on it by other courts. (pdf contains 20pp.)
Resumo:
Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. (PDF contains 20 pages)
Resumo:
This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.
Resumo:
In recent years interest in the production and description of kinin-type substances has been greatly intensified. So, for example, bradykinin, phyllokinin, physalaemin, ranatensin and caerulein could be extracted from the skin of amphibians as well as. eledoisin out of the salivary glands of Eledon moschata. An examination of lampreys seemed to us particularly profitable in the search for the incidence of further kinins. Ammocoetes of different sizes and also adults of both sexes of the species Eudontomyzon danfordi vladykovi were studied in this research. This species is found in many tributaries of the Danube. Skin extracts were tested on on isolated rat uterus, rat duodenum, guinea pig ileum and rabbit jejunum, further tests were done in order to determine a peptide character of the biologically active substance.
Resumo:
Description of a simple method for counting bacteria with active electron transport systems in water and sediment samples. Sodium succinate, NADH and NADPH served as electron donors. It is possible to see several sites of electron transport in the larger cells. Especially impressive are the plankton-algae, protozoa, and small metazoa. This is a partial translation of the ”method” section only.
Resumo:
An article reviewing the methods of biological surveillance of chalk-streams developed and commonly used at that time, with a focus on their application to the River Frome catchment in Dorset. In evaluating the surveillance methods, the author looks at sampling methods (including cores and kick-sampling), the level of identification of macroinvertebrates, and temporal and spatial variations. Responses of indices to organic pollution are also discussed. A number of accompanying figures are also included.
Resumo:
As one part of an on-going programme concerned with environmental protection as provided for under the terms of a UK/USSR Joint Environmental Protection Agreement signed in London, 21 May 1974, a seminar — ”The elaboration of the scientific basis for monitoring the quality of surface water by hydrobiological indices” was held at Valdai in Russia 12—14 July, 1976. As a continuation of this theme it was agreed that delegations of hydrobiologists from each side should carry out reciprocal visits to carry out comparative field tests on selected systems of biological surveillance in use in the respective countries. In May 1978 a team of British hydrobiologists visited the USSR, under the auspices of the Department of Environment, to carry out joint exercises on the River Dnieper and some tributaries. This paper reports the results of selected methods used by the British side when applied to the conditions found in the River Dnieper.
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Resumo:
An assessment of three methods of fish capture, to establish the best fishing method which reflects the best range of sizes and species of fish in a given area. The methods used were trawl netting, electrofishing, and seine netting which were assessed on the Crossens drainage system near Southport. The report also includes a study of roach / bream hybrids that were found at the site, which focuses on their distinguishing features and compared with the features of roach and bream.
Resumo:
Squaretail coralgrouper (Plectropomus areolatus) were captured and tagged at a fish spawning aggregation (FSA) site with conventional and acoustic tags to assess their vulnerability to fishing and spatial dynamics during reproductive periods. Males outnumbered females in catch and, on average, were larger than females. Findings revealed a high vulnerability to fishing, particularly during reproductive periods, and most fish were recaptured within the 5-month spawning season and within 10−12 km of the aggregation site. Individual and sex-specific variability in movement to, and residency times at, the FSA site indicates that individual monthly spawning aggregations represent subsets of the total reproductive population. Some individuals appeared to move along a common migratory corridor to reach the FSA site. Sex-specific behavioral differences, particularly longer residency times, appear to increase the vulnerability of reproductively active males to fishing, particularly within a FSA, which could reduce reproductive output. Both fishery-dependent and fishery-independent data indicate that only males were present within the first month of aggregation. The combined results indicate that reproductively active P. areolatus are highly vulnerable to fishing and that FSAs and migratory corridors of reproductively active fish should be incorporated into marine protected areas. The capture of P. areolatus during reproductive periods should be restricted as part of a comprehensive management strateg
Resumo:
The implementation of Puerto Rican Regulation No. 6768, which overhauled the existing fishery management framework, generated considerable hostility towards local managers. Among the controversial management measures adopted in 2004 were the assignment of fishing licenses based on fishing income, the establishment of closed seasons, and new minimum size restrictions for commercially valuable species. Though tensions have subsided, considerable opposition to these regulations remains. This paper provides a characterization of the current population of active small-scale fishermen, discusses their perceptions about the biological and socio-economic condition of the fishery, and describes their attitudes towards the new management framework. This study revealed that the number of active fishermen decreased from 1,731 in 1988 to 868 in 2008. Although a declining resource base was one of the main drivers behind these waning participation statistics, rising fuel costs and burdensome regulations exacerbated the rate of attrition. The majority of the fishermen were middleaged men (50 years) with moderate levels of formal education and high levels of fishing dependence which limited their employment opportunities outside the fishery. Most of the vessels were small (20 ft) and outfitted with a single outboard engine (80 hp). Hook and line and SCUBA were dominant gears because of their versatility and cost effectiveness. Fishermen suggested that their opposition to the regulations would continue unless they were afforded greater regulatory flexibility and provided with a larger role in the decision-making process. Fishermen were adamant about the need to reconsider the income reporting requirements to secure a fishing license because of the potential for losing public assistance benefits. They also objected to increasing the minimum size of many deepwater snapper (Lutjanidae) and grouper (Serranidae) species because it forced them to discard dead fish, a practice they consider wasteful since these species do not survive the ascent to the surface once hooked.
Resumo:
This report describes a surveillance strategy to detect deepwater invasive species in the Northwestern Hawaiian Islands. A need for this strategy was identified in the Papahānaumokuākea Marine National Monument Management Plan and the Monument’s Draft Natural Resources Science Plan. This strategy focuses on detecting two species of concern, the octocoral Carijoa riisei and the red alga Hypnea musciformis. Most research on invasive species in the Hawaiian archipelago has focused on shallow water habitats within the limits of conventional SCUBA (0-30 m). Deeper habitats such as mesophotic reefs are much more difficult to access and consequently little is known about the distribution of deepwater invasive species or their impacts. Recent deepwater (>30 m) sightings of H. musciformis and C. riisei, in and near NWHI, respectively, have prompted a call for further research and surveillance of invasive species in deepwater habitats. This report compiles the most up to date information about these two species of concern in deepwater habitats. A literature search and conversations with subject matter experts was used to identify their current distribution, preferred habitat types, optimal detection methods and ways to efficiently sample the vast extent of NWHI. The proposed sampling strategy prioritizes survey effort where C. riisei and H. musciformis are most likely to be found. At coarse spatial scales (tens to hundreds of kilometers), opportunistic observations and distance from the Main Hawaiian Islands, a principal propagule source, are used to identify high-risk islands and banks. At fine spatial scales (meters to tens of kilometers) a habitat suitability model was developed to identify high-risk habitats. The habitat suitability model focused on habitat preferences of C. riisei, since the species is well studied and adequate data exists to map habitats. There was insufficient information to identify suitable habitat for H. muscifomis. Habitat preferences for the algae are poorly understood and there is a lack of data at relevant spatial scales to map those preferences which are known. The principal habitats identified by the habitat suitability model were ledges and the edges of rugose coral reefs, where the shade loving octocoral would likely be found. Habitat suitability maps were developed for seven atolls and banks to aid in survey site selection. The protocol relied on technical divers to conduct visual surveys of benthic habitats. It was developed to increase the efficiency of surveys, maximize the probability of detection, identify important information relevant to future surveys and standardize results. The strategy, model and protocol were tested during a field mission in 2009 at several atolls and islands in NWHI. The field mission did not detect any invasive species among deepwater habitats and much was learned to improve future surveys. Data gaps and improvements are discussed.