5 resultados para acid sulphate soils

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the stimulus of the very high international market value of penaeid shrimp, new pond areas for shrimp farming are rapidly being added in Bangladesh. Unfortunately, this expansion is occurring with the loss of some natural mangrove forests and with soils and sediments that are far from ideal for aquaculture. In this study, two representative shrimp farming areas were surveyed and pH, in profile depth, was recorded. It was found that the shrimp farming areas of the Chakaria Sundarban are more acidic than those of the Khulna-Satkhira region due to the acid sulfate soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper discusses the shrimp culture practices of Thailand, the top producing country of cultured shrimp. These shrimp culture techniques include the use of reservoirs for better waste management, utilization of undiluted seawater for culture, low-cost pumping systems, measures to neutralize acid sulfate soils, proper treatment of pond bottom, and solutions to disease problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The article presents the impact of mangrove conversion on fisheries and on coastal areas. The mangrove areas which serve as nursery grounds for important species of fish and crustaceans are also rich feeding ground for many species from various trophic levels. Thus, the destruction of mangroves could affect the availability of fry and broodstock and, consequently, aquaculture production and fisheries. While in coastal areas, the destruction of mangroves increased the risk of coastal erosion from storm surges and winds, accelerates the erosion of riverbanks, exposes acid sulfate soils, leading to poor production and mass mortality of stocks, and affects the freshwater supply through salt intrusion upstream among others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mobility of heavy metals (Zn, Cd, Pb and Ni) was studied in the laboratory acidic leaching two different soils around Ibadan with simulated acid rain. The sampling was carried out from two different sites viz: Orogun and Ilupeju respectively. For Orogun site a depth of 128cm was reached (consisting of four horizons). Different length of polyvinyl chloride (PVC) pipes were cut for different soil horizon depth as observed on the field. The PVC pipes were packed with requires masses of soil. This is then leached using simulated acid rain of different pH of 2.0, 4.0, 6.0 and 8.0 after spiking with known volume of standard solution of metals of interest. It was found that simulated acid rain enhanced the mobility of metals in solution. The pH, Cation Exchange capacity, % clay and organic matter were found to contributed majority to the mobility of metals. Generally as observed, the mobility of metal was to follow the order Zn>Ni>Pb>Cd as the soil is becoming more acidic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no evidence of an increase in the acidity (lower pH or alkalinity) of water-bodies in the Lake District over the last 50 years. Brown trout occur in acid streams and upland tarns where pH is 4.5-5.2 throughout the year. Their occurrence in such waters in Britain and Ireland has been known for most of this century and there is no previous evidence of harmful effects on salmonid fisheries, though numbers of fish are naturally low. However, many benthic invertebrates that are common in hill-streams where pH is above 5.7 do not occur in more acid streams. This phenomenon occurs in the headwaters of several western rivers in Cumbria. It is not a recent response to "acid rain". Harmful effects of pH are undoubtedly more pronounced in waters that are poor in other dissolved ions. Low concentrations of sodium, potassium, calcium and chloride are especially important and may limit the distributions of some aquatic animals even where pH is above 5.7. The concentration of sulphate ions is usually relatively high but this is not important to the fauna; concentrations are at least two times higher in productive alkaline water-bodies than they are in unproductive acid waters.