13 resultados para acetic acid ethyl ester
em Aquatic Commons
Resumo:
Hydrilla (Hydrilla verticillata (L.f.)Royle), a serious aquatic weed, reproduces through formation of underground tubers. To date, attacking this life-cycle stage has been problematic. The purpose of this study was to measure the impact of exposure to dilute acetic acid on monoecious hydrilla tubers under field conditions. In this field experiment, treatments were acetic acid concentration (0, 2.5, or 5%) and sediment condition (perforated or not perforated). Each of 60, 1x1 m plots (in the Oregon House Canal) were randomly assigned to one treatment. Two weeks after treatment, we collected three samples from each plot. One was washed over 2 mm wire mesh screens to separate tubers from sediment. Relative electrolyte leakage was measured for one tuber from each plot. Five additional tubers from each plot were placed in a growth chamber and sprouting monitored for four weeks. A second sample from each plot was placed in a plastic tub and placed in an outdoor tank, filled with water. These samples were monitored for tuber sprouting. Relative electrolyte leakage increased significantly for tubers exposed to 2.5% or 5% acetic acid. Effects on tubers in perforated sediment were reduced. Exposure to acetic acid inhibited tuber sprouting by 80 to 100%, in both chamber and outdoor tests. These results confirm findings from earlier laboratory/greenhouse experiments, and suggest that this approach may be useful in the management of hydrilla tuber banks in habitats where the water level can be lowered to expose the sediments.
Resumo:
American pondweed ( Potamogeton nodosus Poir.) is commonly found in northern California irrigation canals. The purpose of this study was to test the hypothesis that exposure of American pondweed winter buds to dilute acetic acid under field conditions would result in reduced subsequent biomass.
Resumo:
Variable watermilfoil (Myriophyllum heterophyllum Michx.) has recently become a problem in Bashan Lake, East Haddam, CT, USA. By 1998, approximately 4 ha of the 110 ha lake was covered with variable watermilfoil. In 1999, the milfoil was spot treated with Aquacide®, an 18% active ingredient of the sodium salt of 2,4-D [(2,4-dichlorophenoxy) acetic acid], applied at a rate of 114 kg/ha. Aquacide® was used because labeling regarding domestic water intakes and irrigation limitations prevented the use of Navigate® or AquaKleen®, a 19% active ingredient of the butoxyethyl ester of 2,4-D. Variable watermilfoil was partially controlled in shallow protected coves but little control occurred in deeper more exposed locations. 2,4-D levels in the treatment sites were lower than desired and offsite dilution was rapid. In 2000, the United States Environmental Protection Agency (USEPA) issued a special local need (SLN) registration to allow the use of Navigate ® or AquaKleen® in lakes with potable and irrigation water intakes. Navigate® was applied at a rate of 227 kg/ha to the same areas as treated in 1999. An additional 2 ha of variable watermilfoil was treated with Navigate® in 2001, and 0.4 ha was treated in mid-September. Dilution of the 2,4-D ester formulation to untreated areas was slower than with the salt formulation. Concentrations of 2,4-D exceeded 1000 μg/ L in several lake water samples in 2000 but not 2001. Nearly all of the treated variable watermilfoil was controlled in both years. The mid-September treatment appeared as effective as the spring and early summer treatments. Testing of homeowner wells in all 3 years found no detectable levels of 2,4-D.(PDF contains 8 pages.)
Resumo:
The paper deals with the method of preparation of an edible fish protein concentrate from cheap miscellaneous fish. The method consists in cooking the fish with 0.5% glacial acetic acid, and extracting batch—wise, using ethyl alcohol followed by an azeotropic mixture of hexane and alcohol (B. Pt. 58-68°C). The product is finally vacuum dried during which the residual solvent is also removed. The concentrate prepared by this method contains 85% protein of which 96% is pepsin digestible. The product is practically odorless and almost white in color.
Resumo:
The purpose of this work is a contribution to the quantitative record of the use of iron by planktonic algae. Preliminary experiments with Chlorella to determine the rate of iron intake in the presence of inorganic sources of iron did not produce the desired result. The crucial point of this work is the investigation of the influence of various external factors on the stability of FeEDTA (FeEDTA = Ferric(III)-compound of ethylene-diamine tetra-acetic acid), since this compound appears to be particularly well-suited as a source of iron for planktonic algae (e.g. TAMIYA et al. 1953). Cultures of Chlorella fusca in a light thermostat were used in experimental research. Methods and results are discussed.
Resumo:
During the low temperature setting of fish paste, myosin heavy chain (MHC) is polymerized to cross-linked myosin heavy chain (CMHC), which is considered to occur by the action of endogenous transglutaminase (TGase). In this study the contribution of TGase on the setting of Alaska pollack surimi at different temperatures was studied. Alaska pollack surimi was ground with 3% NaCl, 30% h2o and with or without ethylene glycol bis (β-aminoethylether) N, N, N¹,N¹- tetra acetic acid (EGTA), an inhibitor of TGase. Among the pastes without EGTA, highest TGase activity was observed at 25°C but breaking force of the gel set at 25°C was lower than that set at 30°, 35°, and 40°C. Addition of EGTA (5m mol/kg) to the paste suppressed TGase activity at all setting temperatures from 20° to 40°C. Gelation of the pastes and cross-linking of MHC on addition of EGTA were suppressed completely at 20° and 25°C, partially at 30° and 35°C, and not at all at 40°C. The findings suggested that during the setting of Alaska pollack surimi TGase mediated cross-linking of MHC was strong at around 25°C but the thermal aggregation of MHC by non-covalent bonds was strong at above 35°C. Setting of surimi at 40°C and cross-linking of its MHC did not involve TGase.
Resumo:
An attempt was made to prepare an intermediate moisture (around 44% moisture) marinated (pH around 4) fish product. Fillets from Sciaenid fish (each fish weighing 70-80 gm) were dipped in a solution containing 7% acetic acid, 20% common salt and 1% propionic acid for 2 hours. After soaking, the soaked fillets were partially dried to about 44% moisture. Three effective hurdles like low pH (by using 7% acetic add and 1% propionic acid), low water activity (by using 20% salt and partially drying the fillets) and preservative (1% propionic add), were used to prepare a shelf-stable product at room temperature. The dried product was sprayed with 0.0 5% BHA in 50% alcohol and further dried for 10 minutes to remove added water and alcohol, thereby another hurdle (preservative) against fat oxidation. The product was packed in 300 gauge polythene bags and stored in transparent screw cap plastic jars. Fortnightly samples were drawn and subjected to biochemical, bacteriological and organoleptic evaluation to study its storage characteristics. The product was in good acceptable form up to 4 months at ambient temperature. The product needed one hour soaking in water with two changes of water in between to make it free from excess salt and acid smell.
Resumo:
A method for the preparation of fish pickles from a lean variety of fish namely pink perch (Nemipterus japonicus) is described. Dipping the fish in 10% sodium chloride solution containing 6% acetic acid before pickling, was found desirable for retaining the meaty texture of the product. The product has no fish smell or flavour and has a shelf life of more than six months at ambient temperatures and scored very well in organoleptic tests.
Resumo:
A simple process is described for extraction of rays from shark fins. The process consists in treating the rays with acetic acid to soften the tissue, separation of the rays by hand and drying. White fins yield almost double the quantity of rays compared to black fins.
Resumo:
Chitosan may be used to reduce the bacterial load of water. Material prepared according to the method of Radhakrishnan & Prahu described in Res. & Ind., 16(4), pp. 265, used in 1% solution in 1% acetic acid was added at 10 ppm level to contaminated water and allowed to stand for 45 min. Cultures of E. coli, Staphylococci and a mixture of the 2 were inoculated into ordinary and muddy water. Bacterial load was determined, and it is shown that chitosan has excellent qualities as a coagulant/water clarifying agent, especially for muddy waters or those contaminated with suspended matter or bacteria.
Resumo:
Results of experiments carried out on canning edible oyster (Crassostrea madrasensis) meat from farmed as well as wild specimens are discussed. The canning yield of meat was 15% higher from farmed oysters compared to wild specimens. The meat from wild oysters was highly slimy and therefore required an additional pre-treatment of washing in brine containing acetic acid to prevent formation of lumps of meat in the can causing problems for proper heat penetration while processing.
Resumo:
The juice extracted from a locally abundant cheap variety of citrus fruit namely, Citrus reticulata was utilized for pickling. The paper highlights the trials made to select the optimum concentrations of acetic acid and sodium chloride to be used along with the juice of C. reticulata so as to obtain the best, product. The product can be stored well at room temperature for six months.
Resumo:
A simple and cheap process for the preservation of mussel meat by marinading is described. The method involves blanching the mussel meat shucked from depurated live mussels in 3% boiling sodium chloride solution for 5 min followed by preserving it in a solution containing 3% acetic acid and 3% sodium chloride. The product stored in closed glass jars has a storage life of approximately 16 weeks at room temperature (23-30°C), after which the quality began to deteriorate. Texture of the meat is least affected and closely resembles that of the fresh meat.