2 resultados para Zeta function, Calabi-Yau Differential equation, Frobenius Polynomial

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age of a population of rainbow trout (Salmo gairdneri) from a pond in Patagonia was studied by means of scale readings. The population was sampled three times, on December 1984, March 1985 and March 1986. Length at age was back-calculated from growth marks on scales, using the Fraser-Lee equation. By the analysis of length distributions and numbers of marks on scales from each sample, it was concluded that this population was formed by a single cohort, born in spring 1982 and stocked shortly after. Stocking rate is unknown. Significant differences (P0.05) were found between back-calculations of length at age 1 from samples of December 1984 and March 1986. These differences were probably due to length-scale radius relation. Evidences from scales suggested that a single mark is formed each year, during early-mid spring. On the other hand, according to availabe data from the literature for the same species, this population has presented one of the highest growth rates. (pdf contains 15 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new equation to describe the relation between otolith length (OL) and somatic length (fork length [FL]) of fish for the entire lifespan of the fish. The equation was developed by applying a mathematical smoothing method based on an allometric equation with a constant term for walleye pollock (Theragra chalcogramma) —a species that shows an extended longevity (>20 years). The most appropriate equation for defining the relation between OL and FL was a four-phase allometric smoothing function with three inflection points. The inflection points correspond to the timing of settlement of walleye pollock, changes in sexual maturity, and direction of otolith growth. Allometric smoothing functions describing the relation between short otolith radius and FL, long otolith radius and FL, and FL and body weight were also developed. The proposed allometric smoothing functions cover the entire lifespan of walleye pollock. We term these equations “allometric smoothing functions for otolith and somatic growth over the lifespan of walleye pollock.”