5 resultados para Wine - Environmental aspects - South Australia
em Aquatic Commons
Resumo:
The plant Crassula helmsii (Kirk) Cochayne, was likely to become widely distributed and to dominate many damp and wet areas of nature reserves, recreational waters and agricultural drainage of Britain. The aim of this report was to study Australian Swamp Stonecrop in its natural habitat where it is in balance with its environment. This contrasts with its rapid and widespread distribution in the U.K. where its growth interferes with the use of fisheries and amenity lakes but also reduces the value of nature reserves and sites of special scientific interest by suppressing native flora. It was proposed to observe its growth at a variety of sites over its natural distribution and to include some environmental factors, e.g. water-level, water-chemistry (nutrients, acidity and alkalinity), frost-tolerance, salinity, with the help of portable sensors, locally-available services or data. 8 weeks of travel in Australia allowed time to study the plant in its natural habitat including the coastal areas of the southern half of the continent i.e . Western Australia, South Australia, New South Wales, Victoria, Tasmania and southern Queensland. The overall objective was to determine the environmental range by visits to selected sites of Crassula helmsii over its geographic range.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
This contribution is the first part of a four-part series documenting the development of B:RUN, a software program which reads data for common spreadsheets and presents them as low-resolution maps of slates and processes. The program emerged from a need which arose during a project in Brunei Darussalam for a 'low level' approach for researchers to communicate findings as efficiently and expeditiously as possible. Part I provides a overview of the concept and design elements of B:RUN. Part II will highlight results of the economics components of the program evaluating different fishing regimes, sailing distances from ports and fleet operating costs. Environmental aspects will be presented in Part III in the form of overlay maps. Part IV will summarize the implications of B:RUN results to coastal and fishery resources management in Brunei Darussalam and show how this approach can be adapted to other coastlines and used as a teaching and training tool. The following three parts will be published in future editions of Naga, the ICLARM Quarterly. The program is available through ICLARM.
Resumo:
Over the years, aquaculture has developed as one of the fastest growing food production sectors in Nepal. However, local fish supplies have been extremely inadequate to meet the ever increasing demand in the country. Nepal imports substantial quantities of fish and fish products from India, Bangladesh, Thailand, and elsewhere. Integration of pond aquaculture in existing crop-livestock-based farming system is believed to be effective in increasing local fish supply and diversifying livelihood options of a large number of small-holder farmers in southern plains (terai) and mid-hill valleys, thereby also increasing resilience of rural livelihoods. There is growing appreciation of the role of small-scale aquaculture in household food and nutrition security, income generation, and empowerment of women and marginalized communities. This book includes a total of 25 papers presented at the ‘Symposium on Small-scale Aquaculture for Increasing Resilience of Rural Livelihoods in Nepal’, held in Kathmandu on 5-6 February 2009. The papers cover technological, social, economic and environmental aspects of small-scale aquaculture development emerged from research and development initiatives of governmental, non-governmental and international research organizations in recent decad
Resumo:
A critical process in assessing the impact of marine sanctuaries on fish stocks is the movement of fish out into surrounding fished areas. A method is presented for estimating the yearly rate of emigration of animals from a protected (“no-take”) zone. Movement rates for exploited populations are usually inferred from tag-recovery studies, where tagged individuals are released into the sea at known locations and their location of recapture is reported by fishermen. There are three drawbacks, however, with this method of estimating movement rates: 1) if animals are tagged and released into both protected and fished areas, movement rates will be overestimated if the prohibition on recapturing tagged fish later from within the protected area is not made explicit; 2) the times of recapture are random; and 3) an unknown proportion of tagged animals are recaptured but not reported back to researchers. An estimation method is proposed which addresses these three drawbacks of tag-recovery data. An analytic formula and an associated double-hypergeometric likelihood method were derived. These two estimators of emigration rate were applied to tag recoveries from southern rock lobsters (Jasus edwardsii) released into a sanctuary and into its surrounding fished area in South Australia.