3 resultados para White-nose syndrome

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenecity of white spot syndrome virus (WSV) was studied experimentally with challenge exposure of two hundred shrimp with average weight 10 to 12 grams of Litopenaeus vannamei. The shrimp L. vannamei before introducing examined with IQ 2000 detection Kit for WSV. The Fenneropenaeus indicus that showed the clinical sign and PCR positive of white spot disease (WSD) was used the source of WSV. The challenge exposures were accomplished by feeding minced tissue of F. indicus for 24 hours. The result showed L. vannamei after three days revealed the clinical sign of WSV, the PCR examined was positive and all shrimp died after ten days. The shrimp that showed sign of disease were collected for histpathology in Davidson fixator and a part of samples preserved in Ethyl alcohol %75to %90 for PCR. The histopathology showed the effect of virus and cowdly type A inclusion body can see in all tissue except hepatopancreas. The PCR also indicate the virus infected the shrimp Litpeneaus vannamei after 3 days. The SOI and ROI determined the severity of infection and rate of infection in different tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

After serious disease outbreak, caused by new virus (WSV), has been occurring among cultured penaeid shrimps in Asian countries like China since 1993 and then in Latin American countries, during June till July 2002 a rapid and high mortality in cultured Penaeus indicus in Abadan region located in south of Iran with typical signs and symptoms of White Spot Syndrome Virus was confirmed by different studies of Histopathology, PCR, TEM, Virology. This study was conducted for the purpose of determination of prevalence(rate of infection)/ROI and grading severity (SOI) of WSD to five species: 150 samples of captured shrimps and 90 samples of cultured ones; Penaeus indicus, P. semisulcatus, P. merguiensis, Parapenaopsis styliferus, and Metapenaeus affinis in 2005. 136 of 240 samples have shown clinical and macroscopical signs & symptoms including; white spots on carapase (0.5-2 mm), easily removing of cuticule, fragility of hepatopancreas and red color of motility limbs. Histopathological changes like specific intranuclear inclusion bodies (cowdry-type A) were observed in all target tissues (gill, epidermis, haemolymph and midgut) but not in hepatopancreas, among shrimps collected from various farms in the south and captured ones from Persian Gulf, even ones without clinical signs. ROI among species estimated, using the NATIVIDAD & LIGHTNER formula(1992b) and SOI were graded, using a generalized scheme for assigning a numerical qualitative value to severity grade of infection which was provided by LIGHTNER(1996), in consideration to histopathology and counting specific inclusion bodies in different stages(were modified by B. Gholamhoseini). Samples with clinical signs, showed grades more than 2. Most of the P. semisulcatus and M. affinis samples showed grade of 3, in the other hand in most of P. styliferus samples grade of 4 were observed, which can suggest different sensitivity of different species. All samples were tested by Nested PCR method with IQTm 2000 WSSV kit and 183 of 240 samples were positive and 3 1evel of infection which was shown in this PCR confirmed our SOI grades, but they were more specified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquaculture, is perceived as having the greatest potential to meet the growing demand for aquatic food. Crustaceans form one of the main value added components in aquaculture and among them, shrimp aquaculture is the predominant one. Industrial shrimp fanning, in combination with poor management in shrimp aquaculture, has quickly led to severe pollution in shrimp ponds, thereby creating a suitable environment for development of bacterial and virus diseases. White spot disease is one of the most deadly diseases that are caused heavy loss in all Penaeid shrimps family. In Iran during 2002 to 2004 in the Kuzestan province and in 2005 in Bushehr province, the most ponds and farms infected with white spot and the entire industry was facing threat of closure. Owing to the impact of WSSV infection to shrimp aquaculture, there is an urgent need to develop suitable strategies to protect cultured shrimps and make aquaculture more sustainable. Therefore, this study aimed to examine the possibility of protecting shrimp against white spot syndrome virus using bioencapsulated Anemia with E. coil containing the recombinant protein VP28, designed. Virus genome was extracted from naturally infected Litopenaeus vannamei in the Choebdch farms and VP28 gene by designed primers was amplified, extracted, purified and cloned in E. coli TGI. Protein expression evaluated and inactivated bacteria containing recombinant protein encapsulated in Artemia nauplii. White shrimp post larvae stage 5 were fed for 5 days with recombinant nauplii and twice on days 7 and 25 after feeding with Artemia nauplii were challenged with white spot virus. The results of the first experiment revealed that cumulative mortality percent in the group receiving the bacteria containing recombinant plasmid (pMal + VP28) was %14.44±1.11 and the relative percent survival %80.30±1.51. In this group the mortality rates in the various repetitions varied from the 13.33% to 16.66% and relative percent survival of 77.27% to 81.81%. in the Non-recombinant plasmid group (pMal) Mean percent mortality was% 33.33±3.84 and the Relative Percent Survival %54.54±5.24 and in the group that received bacteria contained no recombinant plasmid the Mean cumulative mortality percent was%48.88 ± 5.87 and Relative Percent Survival%33.33± 8.01.