7 resultados para Website Blocking

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a report to the California Department of Fish and Game. Between 2003 and 2008, the Foundation of CSUMB produced fish habitat maps and GIS layers for CDFG based on CDFG field data. This report describes the data entry, mapping, and website construction procedures associated with the project. Included are the maps that have been constructed. This report marks the completion of the Central Coast region South District Basin Planning and Habitat Mapping Project. (Document contains 40 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this project was to gather information on wetland restoration projects in the Moro Bay, California, region. Data provided to the San Francisco Estuary Institute (SFEI) will be used to enhance a web-based, public access database, the Bay Area Wetland Project Tracker. Wetland Tracker provides information on the location, size, sponsors, habitats, contact persons, and status of included projects. Its website provides an interactive map of planned and completed wetland projects (http://www.wetlandtracker.org). (Document contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document describes the analytical methods used to quantify core organic chemicals in tissue and sediment collected as part of NOAA’s National Status and Trends Program (NS&T) for the years 2000-2006. Organic contaminat analytical methods used during the early years of the program are described in NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) for the years 1984-1992 and 1993-1996, respectively. These reports are available from our website (http://www.ccma.nos.gov) The methods detailed in this document were utilized by the Mussel Watch Project and Bioeffects Project, which are both part of the NS&T program. The Mussel Watch Project has been monitoring contaminants in bivalves and sediments since 1986 and is the longest active national contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are sampled on a biennial and decadal timescale for bivalve tissue and sediment respectively. Similarly, the Bioeffects Assessment Project began in 1986 to characterize estuaries and near coastal environs. Using the sediment quality triad approach that measures; (1) levels of contaminants in sediments, (2) incidence and severity of toxicity, and (3) benthic macrofaunal conmmunities, the Bioeffects Project describes the spatial extent of sediment toxicity. Contaminant assessment is a core function of both projects. These methods, while discussed here in the context of sediment and bivalve tissue, were also used with other matricies including: fish fillet, fish liver, nepheloid layer, and suspended particulate matter. The methods described herein are for the core organic contaminants monitored in the NS&T Program and include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), butyltins, and organochlorines that have been analyzed consistently over the past 15-20 years. Organic contaminants such as dioxins, perfluoro compounds and polybrominated biphenyl ethers (PBDEs) were analyzed periodically in special studies of the NS&T Program and will be described in another document. All of the analytical techniques described in this document were used by B&B Laboratories, Inc, an affiliate of TDI-Brook International, Inc. in College Station, Texas under contract to NOAA. The NS&T Program uses a performance-based system approach to obtain the best possible data quality and comparability, and requires laboratories to demonstrate precision, accuracy, and sensitivity to ensure results-based performance goals and measures. (PDF contains 75 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This e-mail conference has been organised by the DFID Aquatic Resources Management (ARM) Programme, S E Asia. It forms part of a wider process of consultation including links with other donors, with government and non-government partners and participatory livelihood assessments with vulnerable groups who benefit from aquatic resources. The objective is to provide a forum for professionals who have been involved in aquatic resources management in the context of poor peoples’ livelihoods, to share experiences, reflect on approaches and contribute to their development. Participants can submit poster presentations (2-pagers) and contribute to the discussions (via the conference website) organised around 5 key issues, set out in this discussion paper. After 4 weeks online the contributed posters and discussions will be edited into a document assessing approaches to aquatic resources management, which benefit livelihoods of poor people. This will be downloadable from the website. (PDF contains 134 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]