5 resultados para Watson, William D.
em Aquatic Commons
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
Jumbo squid (Dosidicus gigas) and purpleback squid (Sthenoteuthis oualaniensis) (Teuthida: Ommastrephidae) are thought to spawn in the eastern tropical Pacific. We used 10 years of plankton tow and oceanographic data collected in this region to examine the reproductive habits of these 2 ecologically important squid. Paralarvae of jumbo squid and purpleback squid were found in 781 of 1438 plankton samples from surface and oblique tows conducted by the Southwest Fisheries Science Center (NOAA) in the eastern tropical Pacific over the 8-year period of 1998–2006. Paralarvae were far more abundant in surface tows (maximum: 1588 individuals) than in oblique tows (maximum: 64 individuals). A generalized linear model analysis revealed sea-surface temperature as the strongest environmental predictor of paralarval presence in both surface and oblique tows; the likelihood of paralarval presence increases with increasing temperature. We used molecular techniques to identify paralarvae from 37 oblique tows to species level and found that the purpleback squid was more abundant than the jumbo squid (81 versus 16 individuals).
Resumo:
Empirical orthogonal function (EOF) analysis and regression analysis are used to investigate zonally averaged seasonal temperature anomaly patterns and trends in the lower stratosphere and upper troposphere. The first four EOFs explain 64 percent of the temperature variance and can be related, respectively, to the solar flux (SF) and El Niño/Southern Oscillation (ENSO), to the quasi-biennial oscillation (QBO), to atmospheric carbon dioxide (CO2) and turbidity (TB), and to ENSO. The signal of the fourth EOF is modulated in January to March by the solar flux, with the sense of the modulation determined by the phase of the quasi-biennial oscillation.
Resumo:
The introduction is followed by a resume of the biogeographic factors and the principal work. The characteristics of zooplankton in different regions are presented based on regular research in Santa Helena Bay and Walvis Bay and the research carried out by William Scoresby. Certain factors of the digestive system of South African plankton are discussed. The next section concerns research in intertropical and equatorial regions in the Gulf of Guinea. It considers the littoral region of Angola, the Pointe Noire region and discusses the density and complexity of stocks. The last section concerns the zooplankton of Nigeria, Ghana and the Ivory Coast and discusses the grouping of species and compares the results.
Resumo:
William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.