26 resultados para Waterways.
em Aquatic Commons
Resumo:
Giant salvinia (Salvinia molesta Mitchell) is an invasive aquatic fern that has been discovered at several locations in southeast Texas. Field reflectance measurements were made on two classes of giant salvinia [green giant salvinia (green foliage) and senesced giant salvinia (mixture of green and brown foliage)] and several associated species. Reflectance measurements showed that green giant salvinia could be best distinguished at the visible green wavelength, whereas senesced giant salvinia could generally be best separated at the near-infrared (NIR) wavelength. Green giant salvinia and senesced giant salvinia could be detected on color-infrared (CIR) aerial photographs where them had pink and grayish-pink or olive-green image responses, respectively. Both classes of giant salvinia could be distinguished in reflectance measurements made on multiple dates and at several locations in southeast Texas. Likewise, they could he detected in CIR photographs obtained on several dates and at widely separated locations. Computer analysis of a CIR photographic transparency showed that green giant salvinia and senesced giant salvinia populations could he quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.0%.
Resumo:
The submersed plants hydrilla (Hydrilla verticillata (L.f.) Royle) and elodea (Elodea canadensis Rich.) are both members of the Hydrocharitaceae family and cause problems in waterways throughout the world. Diquat (6,7-dihydrodipyrido[1,2-α:2’,1’-c]pyrazinediium dibromide) is a contact herbicide used to control nuisance submersed and floating aquatic macrophytes. There is no readily available information in the literature on the control of elodea under various diquat concentration and exposure times (CET) and other than a study by Van et. al 1987, little on hydrilla. Since CET relationships are critical in controlling submersed plants in areas influenced by water exchange, this study was designed to evaluate the efficacy of diquat on hydrilla and elodea under various CET scenarios. (PDF has 3 pages.)
Resumo:
Waterlettuce ( Pistia stratiotes L.) is a free-floating exotic aquatic weed that often invades and clogs waterways in the southeastern United States. A study was conducted to evaluate the potential of using remote sensing technology to distinguish infestations of waterlettuce in Texas waterways. Field reflectance measurements showed that waterlettuce had higher visible green reflectance than associated plant species. Waterlettuce could be detected in both aerial color- infrared (CIR) photography and videography where it had light pink to pinkish-white image tonal responses. Computer analysis of CIR photographic and videographic images had overall accuracy assessments of 86% and 84%, respectively. (PDF contains 6 pages.)
Resumo:
This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
This report is the final product of a two-year study conducted for the Office, Chief of Engineers, by the Moss Landing Marine Laboratories, Moss Landing, California, under Contract No. DACW39-74-C-OI51 with the Environmental Effects Laboratory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), Yicksburg, Mississippi. (PDF contains 192 pages)
Resumo:
This profile covers life history and environmental requirements of both alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), since their distribution is overlapping and their morphology, ecological role, and environmental requirements are similar. The alewife is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life cycle stage, from Newfoundland (Winters et al. 1973) to Soutn Carolina (Berry 1964). Landlocked populations are i n the Great Lakes, Finger Lakes, and many other freshwater lakes (Bigelow and Sch roeder 1953; Scott and Crossman 1973). The blueback herring is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life stage cycle, from Nova Scotia to the St. Johns River, Florida (Hildebrand 1963)