63 resultados para Watershed restoration
em Aquatic Commons
Resumo:
There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.
Resumo:
Guánica Bay is a major estuary on the southwest coast of Puerto Rico. Significant coral reef ecosystems are present outside the bay. These valuable habitats may be impacted by transport of sediments, nutrients and contaminants from the watershed, through the bay and into the offshore waters. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with local and regional experts, conducted an interdisciplinary assessment of coral reef ecosystems, contaminants, sedimentation rates and nutrient distribution patterns in and around Guánica Bay. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems between this study and other locations in the region. This characterization of Guánica marine ecosystems establishes benchmark conditions that can be used for comparative documentation of future change, including possible negative outcomes due to future land use change, or improvement in environmental conditions arising from management actions. This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the study area. Chapter 2 is focused on biogeographic assessments and benthic mapping of the study area, including new surveys of fish, marine debris and reef communities on hardbottom habitats in the study area. Chapter 3 quantifies the distribution and magnitude of a suite of contaminants (e.g., heavy metals, PAHs, PCBs, pesticides) in both surface sediments and coral tissues. Chapter 4 presents results of sedimentation measurements in and outside of the bay. Chapter 5 examines the distribution of nutrients in in the bay, offshore from the bay and in the watershed. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization.
Resumo:
In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)
Resumo:
This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.
Resumo:
“Advanced Watershed Science and Policy (ESSP 660)” is a graduate class taught in the Master of Science in Coastal and Watershed Science & Policy program at California State University Monterey Bay (CSUMB). In 2007, the class was taught in four 4-week modules, each focusing on a local watershed issue. This report is one outcome of one of those 4-week modules taught in the fall 2007 session. (Document contains 32 pages)
Resumo:
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.
Resumo:
This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.
Resumo:
The goal of this project was to gather information on wetland restoration projects in the Moro Bay, California, region. Data provided to the San Francisco Estuary Institute (SFEI) will be used to enhance a web-based, public access database, the Bay Area Wetland Project Tracker. Wetland Tracker provides information on the location, size, sponsors, habitats, contact persons, and status of included projects. Its website provides an interactive map of planned and completed wetland projects (http://www.wetlandtracker.org). (Document contains 4 pages)
Resumo:
Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)
Resumo:
pdf contains 16 pages
Resumo:
We conducted a field experiment between August 2001 and February 2002 in Kings Bay, FL, USA, designed to determine whether the amount of time allowed for wild celery (Vallisneria americana Michx) transplants to establish altered the effect of herbivorous manatees (Trichechus manatus L.)on their survival.
Resumo:
228pp. (pdf contains 257 pages)
Resumo:
Conservation lands, which are essential to protecting water resources in the Santa Fe River basin.
Resumo:
Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)