54 resultados para Water supply networks
em Aquatic Commons
Resumo:
A study of the composition and distribution of fish populations in the inshore, surface and bottom water habitats of Kangimi Reservoir showed that the most abundant family was the Cichlidae followed in order of abundance by the familiesCyprinidae, Schilbeidae, Mormyridae, Mochokidae, Characidae, centropomidae and Bagridae. Though the overall composition of families caught inn the three habitats did not vary significantly (P>0.05) only family Cichlidae showed habitat preference: there was a preponderance of Cichlidae in the inshore water habitat (P<0.05). The families Bagridae and Centropomidae were caught only in the inshore and bottom water habitats while the other families were caught from all habitats and showed no habitat preference. The dominance of primary and secondary consumers indicates high fish production potential under adequate management
Resumo:
This paper is designed to give a general account of freshwater biology as it bears on waterworks practice. Most water that is used for consumption will commonly go through a storage reservoir. Here special reference is given to the biological relations in standing waters, the biological control of water supplies, methods of plankton estimation, the biology of slow sand filtration and the use of algicides.
Resumo:
This paper contains a brief report on the status of the California water supply situation on March 1, 1989, including a review of the antecedent conditions of the past two dry water years.
Resumo:
As a result of this investigation, for the first time from Babolroud river in Iran is 15 species identified, which they belong to 8 genera, from 7 families. The most and least distribution, 13 and 5 species, belong to Miandasht and Rostaye Anarestane Babol stations respectively, which they are 50 kilometers away from each other. Also 20 species belong to 10 genera from 6 families were identified in Parishan lake. The most the distribution belong to stations 1 and 5 with 6 and 18 species respectively. The most commonly distributed family is Lymnaeidae with 6 species: Lyamnaea truncatula, L. auricularia, L. palustris, L. pereger, L. stagnalis and L. gedrosiana, which L. trancatula is identified as the most frequent and has medical importance. L. stagnalis is identified to be the most important to agriculture. Planorbis planorhis, Physa acuta, Lymnaea pereger, Bithynia tenculata and Vavata piscinalis are reported for the first time from this region.
Resumo:
Upward leakage of saline water from an artesian aquifer below 1,500 feet has caused an increase in chloride concentration in the lower Hawthorn aquifer from less than 1,000 mg/1 (milligrams per liter) to values ranging from about 1,300 to 15,000 mg/1. Similarly the higher temperatures of the intruding water has caused an increase in water temperatures in the aquifer from 82"F to values ranging from 83 to 93"F. The intruding water moves upward either through the open bore hole of deep wells or test holes, or along a fault or fracture system, which has been identified in the area. From these points of entry into the lower Hawthorn aquifer, the saline water spreads laterally toward the south and southeast, but is generally confined to components of the fault system. The saline water moves upward from the lower Hawthorn aquifer into the upper Hawthorn aquifer through the open bore hole of wells, which connect the aquifers. This movement has resulted in an increase in chloride from less than 200 mg/1 in the unaffected parts of the upper Hawthorn aquifer to values commonly ranging from about 300 to more than 3,000 mg/1 in parts of the aquifer affected by upward leakage. The upper Hawthorn aquifer is the principal source of ground-water supply for public water-supply systems in western Lee County. Similar effects have been noted in the water-table aquifer, where chloride increased from less than 100 to concentrations ranging from about 500 to more than 5,000 mg/1. This was caused by the downward infiltration of water discharged at land surface from wells tapping the lower Hawthorn aquifer. The spread of saline water throughout most of the McGregor Isles area is continuing as of 1971. (40 page document)
Resumo:
The scope of the investigation involved the drilling of test holes and the detailed inventorying of existing wells in order to define the location, depth, potential yield, and chemical quality of the water contained in the shallow aquifer that might be used for the development of a central water-supply system. The field work and collection of data for the investigation covered the period 1961 through 1963. Much of the data collected for the report on the ground-water resources of Collier County (McCoy, 1962) is incorporated into this report. (Document has 36 pages.)
Resumo:
Practically all water for municipal and industrial use in the Fernandina area is supplied by artesian wells. In recent years, the use of artesian water in the area has increased to meet the needs of expanding industry and increasing population. The total industrial and municipal pumpage has increased from approximately 35 million gallons per day in 1941 to approximately 50 million gallons per day in 1959. Correlated with the increase in water use is the constant decline in the artesian pressure in the area. In many other areas in Florida, such a decline in artesian pressure has resulted in salt-water intrusion into the fresh-water supply.An intrusion of salt water in the Fernandina area would contaminate the existing fresh-water supply and would result in a hardship for the population and seriously injure the economy. Recognizing the threat to the fresh-water supplies of this area, the U. S. Geological Survey in cooperation with the Florida Geological Surveymade a reconnaissance to determineif there has been any intrusion of salt water into the fresh-water supply or if there is any danger of future intrusion. (PDF contains 28 pages.)
Resumo:
It is often difficult to define ‘water quality’ with any degree of precision. One approach is that suggested by Battarbee (1997) and is based on the extent to which individual lakes have changed compared with their natural ‘baseline’ status. Defining the base-line status of artificial lakes and reservoirs however, is, very difficult. In ecological terms, the definition of quality must include some consideration of their functional characteristics and the extent to which these characteristics are self-sustaining. The challenge of managing lakes in a sustainable way is particularly acute in semi-arid, Mediterranean countries. Here the quality of the water is strongly influenced by the unpredictability of the rainfall as well as year-to-year variations in the seasonal averages. Wise management requires profound knowledge of how these systems function. Thus a holistic approach must be adopted and the factors influencing the seasonal dynamics of the lakes quantified over a range of spatial and temporal scales. In this article, the authors describe some of the ways in which both long-term and short-term changes in the weather have influenced the seasonal and spatial dynamics of phytoplankton in El Gergal, a water supply reservoir situated in the south of Spain. The quality of the water stored in this reservoir is typically very good but surface blooms of algae commonly appear during warm, calm periods when the water level is low. El Gergal reservoir is managed by the Empresa Municipal de Abastecimiento y Saneamiento (EMASESA) and supplies water for domestic, commercial and industrial use to an area which includes the city of Seville and twelve of its surrounding towns (ca. 1.3 million inhabitants). El Gergal is the last of two reservoirs in a chain of four situated in the Rivera de Huelva basin, a tributary of the Guadalquivir river. It was commissioned by EMASESA in 1979 and since then the company has monitored its main limnological parameters on, at least, a monthly basis and used this information to improve the management of the reservoir. As a consequence of these intensive studies the physical, chemical and biological information acquired during this period makes the El Gergal database one of the most complete in Spain. In this article the authors focus on three ‘weather-related’ effects that have had a significant impact on the composition and distribution of phytoplankton in El Gergal: (i) the changes associated with severe droughts; (ii) the spatial variations produced by short-term changes in the weather; (iii) the impact of water transfers on the seasonal dynamics of the dinoflagellate Ceratium.
Resumo:
Guided by experience and the theoretical development of hydrobiology, it can be considered that the main aim of water quality control should be the establishment of the rates of the self-purification process of water bodies which are capable of maintaining communities in a state of dynamic balance without changing the integrity of the ecosystem. Hence, general approaches in the elaboration of methods for hydrobiological control are based on the following principles: a. the balance of matter and energy in water bodies; b. the integrity of the ecosystem structure and of its separate components at all levels. Ecosystem analysis makes possible a revelation of the whole totality of factors which determine the anthropogenic evolution of a water body. This is necessary for the study of long-term changes in water bodies. The principles of ecosystem analysis of water bodies, together with the creation of their mathematical models, are important because, in future, with the transition of water demanding production into closed cycles of water supply, changes in water bodies will arise in the main through the influence of 'diffuse' pollution (from the atmosphere, with utilisation in transport etc.).
Resumo:
Biomanipulation is a form of biological engineering in which organisms are selectively removed or encouraged to alleviate the symptoms of eutrophication. Most examples involve fish and grazer zooplankton though mussels have also been used. The technique involves continuous management in many deeper lakes and is not a substitute for nutrient control. In some lakes, alterations to the lake environment have given longer-term positive effects. And in some shallow lakes, biomanipulation may be essential, alongside nutrient control, in re- establishing former aquatic-plant-dominated ecosystems which have been lost through severe eutrophication. The emergence of biomanipulation techniques emphasises that lake systems are not simply chemical reactors which respond simply to engineered chemical changes, but very complex and still very imperfectly understood ecosystems which require a yet profounder understanding before they can be restored with certainty.
The significance of sedimentation and sediments to phytoplankton growth in drinking-water reservoirs
Resumo:
In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.
Resumo:
Tastes and odours are amongst the few water quality standards immediately apparent to a consumer and, as a result, account for most consumer complaints about water quality. Although taste and odour problems can arise from a great many sources, from an operational point of view they are either ”predictable” or ”unpredictable”. The former - which include problems related to actinomycete and algal growth - have a tendency to occur in certain types of water under certain combinations of conditions, whereas the latter - typically chemical spills - can occur anywhere. Long-term control is one option for predictable problems, although biomanipulation on a large scale has had utile success. Detection and avoidance is a more practicable option for both predictable and unpredictable problems, particularly if the distribution network can be serviced from other sources. Where these are not feasible, then water treatment, typically using activated carbon, is possible. In general there is a reasonable understanding of what compounds cause taste and odour problems, and how to treat these. An efficient taste and odour control programme therefore relies ultimately on good management of existing resources. However, a number of problems lie outside the remit of water supply companies and will require more fundamental regulation of activities in the catchment.
Resumo:
Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively.