4 resultados para Warm Mix Asphalt, laboratory characterization, fatigue, permanent deformation, CalME, pavement performance.

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During April 8th-10th, 2008, the Aliance for Coastal Technology (ACT) partner institutions, University of Alaska Fairbanks (UAF), Alaska SeaLife Center (ASLC), and the Oil Spill Recovery Institute (OSRI) hosted a workshop entitled: "Hydrocarbon sensors for oil spill prevention and response" in Seward, Alaska. The main focus was to bring together 29 workshop participants-representing workshop managers, scientists, and technology developers - together to discuss current and future hydrocarbon in-situ, laboratory, and remote sensors as they apply to oil spill prevention and response. [PDF contains 28 pages] Hydrocarbons and their derivatives still remain one of the most important energy sources in the world. To effectively manage these energy sources, proper protocol must be implemented to ensure prevention and responses to oil spills, as there are significant economic and environmental costs when oil spills occur. Hydrocarbon sensors provide the means to detect and monitor oil spills before, during, and after they occur. Capitalizing on the properties of oil, developers have designed in-situ, laboratory, and remote sensors that absorb or reflect the electromagnetic energy at different spectral bands. Workshop participants identified current hydrocarbon sensors (in-situ, laboratory, and remote sensors) and their overall performance. To achieve the most comprehensive understanding of oil spills, multiple sensors will be needed to gather oil spill extent, location, movement, thickness, condition, and classification. No single hydrocarbon sensor has the capability to collect all this information. Participants, therefore, suggested the development of means to combine sensor equipment to effectively and rapidly establish a spill response. As the exploration of oil continues at polar latitudes, sensor equipment must be developed to withstand harsh arctic climates, be able to detect oil under ice, and reduce the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for the U.S. to adopt a multi-agency cooperation for oil spill response, as the majority of issues surounding oil spill response focuses not on the hydrocarbon sensors but on an effective contingency plan adopted by all agencies. It is recommended that the U.S. could model contingency planning based on other nations such as Germany and Norway. Workshop participants were asked to make recommendations at the conclusion of the workshop and are summarized below without prioritization: *Outreach materials must be delivered to funding sources and Congressional delegates regarding the importance of oil spill prevention and response and the development of proper sensors to achieve effective response. *Develop protocols for training resource managers as new sensors become available. *Develop or adopt standard instrument specifications and testing protocols to assist manufacturers in further developing new sensor technology. *As oil exploration continues at polar latitudes, more research and development should be allocated to develop a suite of instruments that are applicable to oil detection under ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the 1940s until 2003, portions of the island of Vieques, a municipality within the Commonwealth of Puerto Rico, were used by the US Navy as a base and training facility, resulting in development and zoning history that differ in comparison to other Caribbean islands. The majority of former Navy lands are now under the jurisdiction of the Department of the Interior’s Fish and Wildlife Service as a National Wildlife Refuge, while a smaller percentage of land was transferred to the Vieques municipality and the Puerto Rico Conservation Trust. An analysis of the distribution and status of the marine resources is timely in light of the recent land transfer, increases in development and tourism, and potential changes in marine zoning around the island. To meet this need, NOAA’s Biogeography Branch, in cooperation with the Office of Response and Restoration and other local and regional partners, conducted Part I of an ecological characterization to integrate historical data and research into a synthesis report. The overall objective of this report is to provide resource managers and residents a comprehensive characterization of the marine resources of Vieques to support research, monitoring, and management. For example, knowledge of the spatial distribution of physical features, habitats, and biological communities is necessary to make an informed decision of the establishment and placement of a marine protected area (MPA). The report is divided into chapters based on the physical environment (e.g., climate, geology, bathymetry), habitat types (e.g., reefs and hardbottom, seagrasses, mangroves) and major faunal groups (e.g. fish, turtles, birds). Each section includes five subsections: an overview, description of the relevant literature, methods of analysis, information on the distribution, status and trends of the particular resource, and a discussion of ecological linkages with other components of the Vieques marine ecosystem and surrounding environment. The physical environment of Vieques is similar to other islands within the Greater Antilles chain, with some distinctions. The warm, tropical climate of Vieques, mediated by the northeasterly trade winds, is characterized by a dry season (December-April) and a rainy season (May-November), the latter of which is characterized by the occasional passage of tropical cyclones. Compared to mainland Puerto Rico, Vieques is characterized by lower elevation, less annual precipitation, and higher average temperatures. The amount of annual precipitation also varies spatially within Vieques, with the western portion of the island receiving higher amounts of rainfall than further east. While the North Equatorial Current dominates the circulation pattern in the Greater Antilles region, small scale current patterns specific to Vieques are not as well characterized. These physical processes are important factors mitigating the distribution and composition of marine benthic habitats around Vieques. In general, the topography of Vieques is characterized by rolling hills. Mt. Pirata, the tallest point at 301 m, is located near the southwest coast. In the absence of island wide sedimentation measurements, information on land cover, slope, precipitation, and soil type were used to estimate relative erosion potential and sediment delivery for each watershed. While slope and precipitation amount are the primary driving factors controlling runoff, land use practices such as urban development, military activity, road construction, and agriculture can increase the delivery of pollution and sediments to coastal waters. Due to the recent land transfer, increased development and tourism is expected, which may result in changes in the input of sediments to the coastal environment.