4 resultados para WATER ESCAPE STRUCTURES
em Aquatic Commons
Resumo:
Recently there has been much activity in reclaiming the low-lying coastal areas of Dade County for residential use, by the addition of fill. The fill is obtained by digging canals both normal to and parallel to Biscayne Bay. The canals serve the additional purpose of providing an access to the Bay for boats. A problem needing to be considered is the effect that these canals will have on the ground-water resources. It is expected that the canals will have little effect on ground water in parts of the county distant from the coast, but their effect in coastal areas is a matter of concern. In order to predict what, may happen in the vicinity of these new canals if they are not equipped with adequate control structures, it is instructive to review what has happened in the vicinity of similar canals in the past. The U. S. Geological Survey, in cooperation with Dade County, the cities of Miami and Miami Beach, the Central and Southern Florida Flood Control District, and the Florida Geological Survey has collected water-level and salinity data on wells and canals in Dade County since 1939. Some of the agencies named, and others, collected similar data before 1939. Analysis of all the data shows that sea water in the Atlantic Ocean and Biscayne Bayis the sole source of salt-water contamination in the Biscayne aquifer of the Dade County area. (PDF has 19 pages.)
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
Many of British rivers hold stocks of salmon (Salmo salar L.) and sea trout (Salmo trutta L.) and during most of the year some of the adult fish migrate upstream to the head waters where, with the advent of winter, they will eventually spawn. For a variety of reasons, including the generation of power for milling, improving navigation and measuring water flow, man has put obstacles in the way of migratory fish which have added to those already provided by nature in the shape of rapids and waterfalls. While both salmon and sea trout, particularly the former, are capable of spectacular leaps the movement of fish over man-made and natural obstacles can be helped, or even made possible, by the judicious use of fish passes. These are designed to give the fish an easier route over or round an obstacle by allowing it to overcome the water head difference in a series of stages ('pool and traverse' fish pass) or by reducing the water velocity in a sloping channel (Denil fish pass). Salmon and sea trout make their spawning runs at different flow conditions, salmon preferring much higher water flows than sea trout. Hence the design of fish passes requires an understanding of the swimming ability of fish (speed and endurance) and the effect of water temperature on this ability. Also the unique features of each site must be appreciated to enable the pass to be positioned so that its entrance is readily located. As well as salmon and sea trout, rivers often have stocks of coarse fish and eels. Coarse fish migrations are generally local in character and although some obstructions such as weirs may allow downstream passages only, they do not cause a significant problem. Eels, like salmon and sea trout, travel both up and down river during the course of their life histories. However, the climbing power of elvers is legendary and it is not normally necessary to offer them help, while adult silver eels migrate at times of high water flow when downstream movement is comparatively easy: for these reasons neither coarse fish nor eels are considered further. The provision of fish passes is, in many instances, mandatory under the Salmon and Freshwater Fisheries Act 1975. This report is intended for those involved in the planning, siting, construction and operation of fish passes and is written to clarify the hydraulic problems for the biologist and the biological problems for the engineer. It is also intended to explain the criteria by which the design of an individual pass is assessed for Ministerial Approval.
Resumo:
Study of batch profile evolution and scouring effect due to the wave and current impacts in the coastal zone has been one of the most important issues in coastal engineering research projects during the past decades .to construct the coastal protective structures such piers, breakwaters and seawalls, it is necessary to estimate the scouring depth and bed level changes in the vicinity of such structures. Furthermore, the time - dependent changes in the equilibrium profile of the surf zone can be of great importance in designing coastal structures. Because of the importance of coastal engineering study in Iran due to the existence of two important coastal area located in the north and south parts of the country, and due to the lack of classified data in this respect (particularly the effect of sea level rise on coastal morphology) in the present study, based on the available data of Bandar Anzali region, an analysis of the coastal zone behavior is made. Bed level elevations are measured and compared with the theoretical equilibrium profile. It is shown that the behavior of the coastal zone in the region is consistent with the dean (equilibrium profile . In the next stage, following extensive investigations, the bed level changes due to a rise in sea level at different locations in the surf zone are estimated. Finally based on the results obtained for profile evolution due to sea level rise, the conclusion is made for design of coastal structures located in the study area. The results obtained from the present study indicate that the sea level rise can have a significant effect on beach profile and resulting erosion in the study area. The results are graphically presented with can be used for design purposes and establishing a data base for the coastal zone in the study region. It is believed that the present work can be regarded as a contribution to the existing knowledge of coast process in the study area and referred to as a basis for the future coastal research projects.