28 resultados para WASTE-WATER IRRIGATION
em Aquatic Commons
Resumo:
Waste water from some National Electric Power Authority (NEPA) housing units in Nigeria was fed to a 0.4 ha pond which was stocked with 2,200 Sarotherodon galilaeus fingerlings with a mean weight of about 36.0gm and 1000 Cyprinus carpio fingerlings with a mean weight of 10gm. This yielded after 10 months, over 2300 kg of harvestable fish plus over 20,000 Sarotherodon galilaeus fingerlings. The growth rate of C. carpio was not very encouraging possibly because of the type of plankton that colonised the pond. The S. galilaeus became stunted because of overpopulation as there were no carnivores to control their excessive breeding. The physico-chemical parameters were favourable for the growth of fish food organisms
Resumo:
The best evidence for establishing the level of eutrophy of a water-body is its algal production which makes it possible to identify the type and the intensity of the eutrophication according to the kind and number of algal species present: when the number of algae exceeds half a million per litre then one speaks o an ”algal bloom”. The scope of the present research aims to verify if the alga Selenastrum capricornutum can be used as a test alga under our culture conditions and to determine the eutrophic level of the secondary effluent of a modern plant for the treatment of domestic discharge and to investigate the eventual ”limiting factors”. Finally this paper aims to study the effect on the secondary effluent of tertiary treatment carried out artificially in the laboratory.
Resumo:
The utilization of waste waters in aquaculture were briefly reviewed. At the National Institute for Freshwater Fisheries Research (NIFFR), stocking density (20 to 160 fish/m super(3)) experiments using Sarotherodon galilaeus (without supplementary feeding) in floating cages were carried out in a sewage pond (0.4ha surface area). Cage culture of S. galilaeus was observed to have potentials in waste waters aquaculture. Recommendations were made on the execution of an intergrated waste water management and utilization.
Resumo:
A comparative study was carried out between the two biggest creeks along the Arabian Gulf coast of the United Arab Emirates to evaluate impacts of sewage and industrial effluents on their hydrochemical characteristics. Surface and bottom water samples were collected from Abu Dhabi and Dubai creeks during the period from October 1994 to September 1995. The hydrochemical parameters studied were: temperature (21.10-34.00°C), salinity (37.37-47.09%), transparency (0.50-10.0 m), pH (7.97-8.83), dissolved oxygen (1.78-13.93 mg/l) and nutrients ammonia (ND- 13.12,ug-at N/1), nitrite (ND-6.66 ,ug-at N/1), nitrate (ND- 41.18 ,ug-at N/1), phosphate (ND- 13.06 ,ug-at P/1), silicate (0.68-32.50 ,ug-at Si/1), total phosphorus (0.26- 21.48 ,ug-at P/1), and total silicon (0.95- 40.32 ,ug-at Si/1). The present study indicates clearly that seawater of Abu-Dhabi Creek was warmer (28.l2°C) than Dubai (27.56°C) resulting in a higher rate of evaporation. Owing to more evaporation, salinity levels showed higher levels at Abu Dhabi (43.33%) compared to Dubai (39.03%) seawater. The study also revealed higher secchi disc readings at Abu Dhabi Creek (4.68 m) as compared to Dubai Creek (2.60 m) suggesting more transparency at Abu Dhabi Creek. Whereas, seawater of Dubai exhibited higher levels of pH (1.03 times), and dissolved oxygen (1.05 times) than Abu Dhabi seawater due to an increase in productivity. Meantime, seawater of Dubai showed higher tendency to accumulate ammonia (8.22 times), nitrite (10.93 times), nitrate (5.85 times), phosphate (10.64 times), silicate (1.60 times), total phosphorus (3.19 times), and total silicon (1.54 times) compared to Abu Dhabi seawater due to the enrichment of seawater at Dubai with domestic sewage waters which has distinctly elevated the levels of the nutrient salts particularly in inner-most parts of the creek leading to eutrophication signs. The changes occurred in the receiving creek water of Dubai as a result of waste-water disposal that have also reflected on the atomic ratios of nit: Effect of pollution rogen: phosphorus: silicon.
Resumo:
Nakivubo swamp (papyrus wetland) is located in the south east of the city of Kampala, Uganda. This swamp has been receiving waste water from Nakivubo channel for more than two decades. This investigation was aimed at monitoring the level of pollutants (nutrients and faecal coliforms) as the waste water filtrates through the swamp and the flow patterns of waste water through the swamp. From this preliminary investigation it was found out that the waste water is not evenly distributed over the swamp. Also high levels of pollutants seem to filtrate through the swamp and enter Inner Murchison Bay - Lake Victoria. Further research is under way to investigate in more detail the capacity of Nakivubo swamp to remove nutrients/pollutants from waste water flowing through it and the dominant mechanisms/processes involved.
Resumo:
Today, the use of heavy metals and chemical products industry expanded. The presence of significant amounts of, pollutants in industrial waste water can lead to serious risks to the environment and human health have heavy metals like chromium is one example of the future of salmon knock pond environment. Chromium is an essential element in the diet, but high doses of this element is very dangerous. Hence the use of chemical methods as a tool for the removal of metals from waste water pond be used. The aim of this study was to investigate the mineral kaolin adsorbents for the removal of chromium is water. Thus, the effect of different concentrations of absorbent micro amounts of chromium absorption and variable temperature, pH and electrolytes were studied. During the investigation of spectroscopic instrument (Varian) UV-VIS are used. Comparison of the absorption mechanism of chromium adsorption by the adsorbent with nano-absorbent kaolin kaolin was investigated. According to the studies done in the same conditions of temperature, pH and shaking rate of chromium absorption by nano kaolin kaolin is much more attractive. Therefore, its use as an adsorbent abundant, cheap, accessible, efficient and effective is proposed.
Resumo:
Research has proven that Shoreline Erosion is caused by excess water contained within the shore face. This Research presents an opportunity to control erosion by managing the near shore water table. Our Research on Bogue Banks North Carolina suggests that our buildings and other impervious surfaces collect and concentrate water from storm rain runoff into the surface water table and within the critical beach front water exit point. Presently our Potable Fresh Water is supplied from deep wells located beneath an impervious layer of Marl. After our use, the Waste water is drained into the Surface Aquifer, the combined waste and storm rain water raises the Surface Aquifer water table and produces Erosion. The Deep Aquifers presently supplying our Potable Water have an unknown recharge rate, with increasing reports of Salt Water intrusion. We believe our Vital Fresh water supply system should be modified to supply Reverse Osmosis treatment plants from shallow wells. This will lower the Surface Water Table. These Shallow wells, either horizontal or vertical, might be located within the beach front, adjacent to high erosion risk properties. Beach Drains and Reverse Osmosis Water systems are new and proven technologies. By combining these technologies we can reduce or reverse Shore Erosion, ensure a safe Potable Water supply, reduce requirements for periodic beach nourishment, reduce taxes and protect our property well into the Future. (PDF contains 5 pages)
Resumo:
The waste water treatment of Dabou (Côte d'Ivoire), made of three oxydation ponds (B1, B2 and B3), is designed to ensure a biological treatment of domestic sewage and a valorization of the final effluent in aquaculture. In order to understand the ecological mechanisms and the performance of this system, a pluridisciplinary program was achieved in February 1989.
Resumo:
The presence of even very minute quantities of pollutants may become harmful either due to their direct effect on zooplankton or indirectly due to the transfer of the pollutants to other trophic levels through zooplankton. The recent trend in marine pollution studies is therefore to find out the effects of very minute quantities of these pollutants on marine zooplankton and the methods of their accumulation and transfer to the organisms of higher trophic level including man. A review of laboratory and field studies concerning the effects of pollutants such as hydrocarbons, crude oil, heavy metals, pesticides and heated waste water on the survival, breeding, movement, faecal pellet production, growth and development on marine zooplankton is presented.
Resumo:
Research has shown that aquatic weeds, particularly hydrilla ( Hydrilla verticillata , (L.F.) Royle), can be controlled with exposure of 8 to 12 weeks with concentrations of 10 to 15 ppb of fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl) phenyl]-4(1 H )- pyridinone) (Haller et al. 1990 and Fox et al. 1994). Fluridone label recommendations restrict the use of the treated waters for irrigation of turf or newly seeded crops and seed beds for 30 days following the last application of the herbicide. The objective of this research was to determine the effects of 10 weeks of irrigation with fluridone containing water on a common Florida residential turfgrass.
Resumo:
Waterhyacinth ( Eichhornia crassipes (Mart.) Solms.) was evaluated at ratios of 25, 50 and 75% with paddy straw ( Oryza sativa L.) for oyster mushroom ( Pleurotus sajor-caju) cultivation. There was an increase in yield with decreasing ratio waterhyacinth.
Resumo:
A large part of western Manatee County is devoted to the growing of winter vegetables and citrus fruits. As in most of peninsular Florida, rainfall in the county during the growing season is not sufficient for crop production and large quantites of artesian water are used for irrigation. The large withdrawals of artesian water for irrigation result in a considerable decline of the artesian head in the western part of the county. This seasonal decline of the artesian head has become larger as the withdrawal of artesian water has increased. The lowering of the fresh-water head in some coastal areas in the State has resulted in an infiltration of sea water into the water-bearing formations. The presence of salty water in the artesian aquifer in parts of the coastal area of Manatee County indicates that sea water may also have entered the waterbearing formations in this area as a result of the decline of artesian pressure during the growing season. The purpose of the investigation is to make a detailed study of the geology and ground-water resources of the county, primarily to determine whether salt-water encroachment has occurred or is likely to occur in the coastal area. (PDF contains 38 pages.)
Resumo:
Variable watermilfoil (Myriophyllum heterophyllum Michx.) has recently become a problem in Bashan Lake, East Haddam, CT, USA. By 1998, approximately 4 ha of the 110 ha lake was covered with variable watermilfoil. In 1999, the milfoil was spot treated with Aquacide®, an 18% active ingredient of the sodium salt of 2,4-D [(2,4-dichlorophenoxy) acetic acid], applied at a rate of 114 kg/ha. Aquacide® was used because labeling regarding domestic water intakes and irrigation limitations prevented the use of Navigate® or AquaKleen®, a 19% active ingredient of the butoxyethyl ester of 2,4-D. Variable watermilfoil was partially controlled in shallow protected coves but little control occurred in deeper more exposed locations. 2,4-D levels in the treatment sites were lower than desired and offsite dilution was rapid. In 2000, the United States Environmental Protection Agency (USEPA) issued a special local need (SLN) registration to allow the use of Navigate ® or AquaKleen® in lakes with potable and irrigation water intakes. Navigate® was applied at a rate of 227 kg/ha to the same areas as treated in 1999. An additional 2 ha of variable watermilfoil was treated with Navigate® in 2001, and 0.4 ha was treated in mid-September. Dilution of the 2,4-D ester formulation to untreated areas was slower than with the salt formulation. Concentrations of 2,4-D exceeded 1000 μg/ L in several lake water samples in 2000 but not 2001. Nearly all of the treated variable watermilfoil was controlled in both years. The mid-September treatment appeared as effective as the spring and early summer treatments. Testing of homeowner wells in all 3 years found no detectable levels of 2,4-D.(PDF contains 8 pages.)
Resumo:
The visit highlighted the vital contribution of the inland fisheries sector to provision of basic food security within the uncleared area (farmers report very low consumption frequencies for all other fish or meat protein substitutes). A 30-mile system of Brackish water lagoons which demarcates the cleared and uncleared areas is the main source of retailed fish in the uncleared area. Second in importance is the inland tank fishery, where the bulk of production emanates from 17 major irrigation reservoirs. [PDF contains 29 pages]
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production