9 resultados para University of Texas Health Science Center at Houston

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first concept of a new library was introduced in 2001 by a faculty member at the University of Texas Marine Science Institute. The suggestion for the construction of a new library was based on two specific reasons: existing library is located in one of the most vulnerable buildings to hurricane damage and the library has outgrown its current space. This presentation provides a general overview of the current status and changing needs of the Marine Science Library and how the idea of a new library finally became a reality

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This regional atlas summarizes and illustrates the distribution and abundance patterns of fish eggs and larvae of 102 taxa within 34 families found in the Northeast Pacific Ocean including the Bering Sea, Gulf of Alaska, and U.S. west coast ecosystems. Data were collected over a 20+ year period (1972–1996) by the Recruitment Processes Program of the Alaska Fisheries Science Center (AFSC). Ichthyoplankton catch records used in this atlas were generated from 11,379 tows taken during 100 cruises. For each taxon, general life history data are briefly summarized from the literature. Published information on distribution patterns of eggs and larvae are reviewed for the study area. Data from AFSC ichthyoplankton collections were combined to produce an average spatial distribution for each taxon. These data were also used to estimate mean abundance and percent occurrence by year and month, and relative abundance by larval length and season. Abundance from each tow was measured as catch per 10 m2 surface area. A larval distribution and abundance map was produced with a geographic information system using ArcInfo software. For taxa with identifiable pelagic eggs, distribution maps showing presence or absence of eggs are presented. Presence or absence of adults in the study area is mapped based on recent literature and data from AFSC groundfish surveys. Distributional records for adults and early life history stages revealed several new range extensions. (PDF file contains 288 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, in order to assess the ecological health status and zoning of soft bottom of Gorgan Bay, the spatial and temporal distribution of macrofauna and their relationship with environmental stress were investigated. Sediment samples were collected using a Van Veen grab at 22 sampling points, seasonally during 2012-2013. The averages (±SD) of the percentages of sand, silt, clay and TOM (Total Organic Matter) in the sediment samples were determined (44.4± 15, 53.4 ± 14, and 2.2 ±2.2 and 7.2% ± 1.6, respectively). Our results showed that mean (range) of Al, As, Cu, Fe, Ni, Pb and Zn in the sediment samples were 1.2 % (0.4-2.1), 4.8 (2.5- 10.3) ppm, 10.5 (4.4-16.9) ppm, 1 (0.4 – 1.6) % , 13.6 (6.2-21.5) ppm, 9.1 (4.7-12.9) ppm and 23.9 (3.1-39.4) ppm, respectively. In spring, both Al and Ni were higher than the guideline level. In the event that arsenic was exceeds the guidelines in summer. In this study, 14 species of macrofauna from 12 families were identified. Polychaeta with 3 species was the most dominant group in terms of abundance. The four most abundant taxa making up 85% of all specimens (Streblospio gynobranchiata, Tubificidae, Hediste versicolor and Abra segmentum). The western area were characterized by the higher species diversity (H', 1.94). So Gorgan Bay presents transitional macrobenthic assemblages that are spatially distributed along substrate gradients .The mean of Shannon index, BENTIX, BO2A, AMBI and M-AMBI in the bay was 1.3, 2.2, 0.4, 3.2 and 0.65 respectively. According to the results of these indices, ecological status of the western part of the bay assessed better than the other parts. According to the results of the nmMDS (non-metric Multidimensional Scaling), PCA (Principal Components Analysis), the map of distribution of heavy metals and the map of the ecological status , it seems Gorgan Bay is divided into two separate zones (the eastern and the western parts).M-AMBI finaly introduced reliable index for assessing the ecological status of the Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate benthic macro-invertebrates species diversity as bio-indicators of environmental health in Bahrekan bay (in the Northwest of Persian gulf). Seasonal sediments sampling along 5 transects, 15 stations at 4 replicates (3 replicates for macrobenthos and 1 replicate for sediment analysis) was done from November 2008 to August 2009 by 0.025 m2 Van Veen grab sampler. Physical and chemical parameters of water, grain size analysis, %TOM and Ni and Va concentrations of sediments were assessed through four seasons. Macrobenthic communities after staining and sorting, using stereomicroscope have been identified. Their density in every station and every season calculated. For using of AMBI index, identified macrobenthos according to their sensitivity to stressors and pollutants, categorized into 5 ecological groups and for using of Bentix index categorized into 3 ecological groups. The diversity indices and indicators that showing ecological status were calculated. Also, the differences between physiochemical parameters of sea water, sediments TOM% and grain size, diversity indices in stations and seasons were recorded (P=0.05). The correlation coefficient determined for all parameters. According to the results of grain size analysis, bottom grain size categorized as clay. Highest percent of TOM was belong to autumn (36.39±.075) and lowest was belong to summer (19.01±0.51). Also there was positive correlation (p=0.01) between %TOM and %Clay that showing sediments with lowest size containing highest amounts of organic matters. Ni concentrations in sediments (87.80±21.25)mg/kg showed the amounts over than standards levels but Va concentrations in sediments (53.54±17.60)mg/kg showed the amounts lower than standards level. The highest density of macrobenthos was recorded for summer (8254±485) N/m2 and the lowest density was recorded for spring (3775±172)N/m2. The highest annual density was belong to mollusca (81%) and then polycheates (13%), Others (4%) and crustaceae (2%). The highest diversity was recorded for winter (Simpson index: 0.13±0.01, H':3.47±0.06) and the lowest diversity recorded for autumn (Simpson index: 0.16±0.01, H':3.17±0.06). in all stations, the highest amount of Shanon index was belong to T2S3 station in summer (4.11± 0.32) and the lowest amount was belong to T1S1 station in autumn (2.42± 0.41). The annual mean of Simpson diversity index: (0.15 ±0.04) and Shanon diversity index (3.36±0.03), illustrated that macrobenthos in Bahrekan bay have a good variation. The results of Brilluin and N1 (Number of equally common species) indices confirm the results of Simpson index. For study on the regions that diversity has a little difference between stations, with use of Ni index, the degree of differences could be better ono recognizable. According to the results of AMBI index in all seasons (autumn: 0.46±0.03; summer: 0.22±0.01; annual mean:0.31±0.01) and standards (0.0health: normal and ecological status: high; 0.2health: impoverished; ecological status: high) ecological status for all seasons categorized in high status with dominant ecological groups I (sensitive species) but benthic community health were impoverished. The results of Bentix index in all seasons (autumn: 5.07±0.07; summer: 5.57±0.02; annual mean: 5.40±0.02) and standards (4.5atus: high) showed high ecological status for all seasons and stations. According to the results of AMBI and Bentix indices, highest amount of species diversity was belong to the summer and the lowest amount of species diversity was belong to the autumn. With regarding to high species diversity in Bahrekan Bay, AMBI index present accurate assessment rather to Bentix index. AMBI can be used successfully in ecosystems like to study area for detecting the pollutant and disturbance recourses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tidal creek ecosystems are the primary aquatic link between stormwater runoff form the land and estuaries. Small tidal creeks begin in upland areas and drain into larger creeks forming a network. The creeks increase in size until they join a tidal river, sound, bay, or harbor that ultimately conect to the coastal ocean. The upper regions or headwaters of tidal creeks are "first responders" to stormwater runoff and are an important habitat for evaluating the impacts of coastal development on aquatic ecosystems. (PDF contains 22 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2003, twelve marine protected areas were established in state waters (0-3 nmi) surrounding the Channel Islands. NOAA is considering extending this network (3-6 nmi) into deeper waters of the Channel Islands National Marine Sanctuary (CINMS). In order for effective long-term management of the deep water reserves to occur, a well-structured monitoring program is required to assess effectiveness. The CINMS and the National Marine Sanctuary Program (NMSP) hosted a 2-day workshop in April 2005 to develop a monitoring plan for the proposed federal marine reserves in that sanctuary. Conducted at the University of California at Santa Barbara, participants included scientists from academic, state, federal, and private research institutions. Workshop participants developed project ideas that could answer priority questions posed by the NMSP. This workshop report will be used to develop a monitoring plan for the reserves. (PDF contains 47 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

John Nathan Cobb (1868–1930) became the founding Director of the College of Fisheries, University of Washington, Seattle, in 1919 without the benefit of a college education. An inquisitive and ambitious man, he began his career in the newspaper business and was introduced to commercial fisheries when he joined the U.S. Fish Commission (USFC) in 1895 as a clerk, and he was soon promoted to a “Field Agent” in the Division of Statistics, Washington, D.C. During the next 17 years, Cobb surveyed commercial fisheries from Maine to Florida, Hawaii, the Pacific Northwest, and Alaska for the USFC and its successor, the U.S. Bureau of Fisheries. In 1913, he became editor of the prominent west coast trade magazine, Pacific Fisherman, of Seattle, Wash., where he became known as a leading expert on the fisheries of the Pacific Northwest. He soon joined the campaign, led by his employer, to establish the nation’s first fisheries school at the University of Washington. After a brief interlude (1917–1918) with the Alaska Packers Association in San Francisco, Calif., he was chosen as the School’s founding director in 1919. Reflecting his experience and mindset, as well as the University’s apparent initial desire, Cobb established the College of Fisheries primarily as a training ground for those interested in applied aspects of the commercial fishing industry. Cobb attracted sufficient students, was a vigorous spokesman for the College, and had ambitions plans for expansion of the school’s faculty and facilities. He became aware that the College was not held in high esteem by his faculty colleagues or by the University administration because of the school’s failure to emphasize scholastic achievement, and he attempted to correct this deficiency. Cobb became ill with heart problems in 1929 and died on 13 January 1930. The University soon thereafter dissolved the College and dismissed all but one of its faculty. A Department of Fisheries, in the College of Science, was then established in 1930 and was led by William Francis Thompson (1888–1965), who emphasized basic science and fishery biology. The latter format continues to the present in the Department’s successor, The School of Aquatic Fisheries and Science.