5 resultados para Underground cavities
em Aquatic Commons
Resumo:
Hydrilla (Hydrilla verticillata (L.f.)Royle), a serious aquatic weed, reproduces through formation of underground tubers. To date, attacking this life-cycle stage has been problematic. The purpose of this study was to measure the impact of exposure to dilute acetic acid on monoecious hydrilla tubers under field conditions. In this field experiment, treatments were acetic acid concentration (0, 2.5, or 5%) and sediment condition (perforated or not perforated). Each of 60, 1x1 m plots (in the Oregon House Canal) were randomly assigned to one treatment. Two weeks after treatment, we collected three samples from each plot. One was washed over 2 mm wire mesh screens to separate tubers from sediment. Relative electrolyte leakage was measured for one tuber from each plot. Five additional tubers from each plot were placed in a growth chamber and sprouting monitored for four weeks. A second sample from each plot was placed in a plastic tub and placed in an outdoor tank, filled with water. These samples were monitored for tuber sprouting. Relative electrolyte leakage increased significantly for tubers exposed to 2.5% or 5% acetic acid. Effects on tubers in perforated sediment were reduced. Exposure to acetic acid inhibited tuber sprouting by 80 to 100%, in both chamber and outdoor tests. These results confirm findings from earlier laboratory/greenhouse experiments, and suggest that this approach may be useful in the management of hydrilla tuber banks in habitats where the water level can be lowered to expose the sediments.
Resumo:
The rapidly expanding population and economic growth in the seven counties of the East Central Florida Regional Planning Council as shown in Figure 1, herein called the East Central Florida Region or the Region, has resulted in increasing demands on its water resources. Although there is abundant water in the Region as a whole, the water in some areas of the Region is of unacceptable quality for most uses. As the population increases the demand for water will become much greater and the available supply may be reduced by pollution and increased drainage necessitated by urbanization and other land development- Ground-water supplies can be increased by capturing and storing water underground that now drains to the sea or evaporates from swamp areas. Research is needed, however, to develop artificial-recharge methods that are feasible and which will preserve or improve the quality of water in the aquifer. (PDF contains 57 pages)
Resumo:
Many of our surface waters go underground to the aquifer via sinkholes (or swallets) and the water is then called groundwater. Most of us rely on groundwater for our drinking water. Springs are where the groundwater comes to the surface to once again become surface waters. Below is a map of the springs and swallets of the Lower Santa Fe River.
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
A GIS study was carried out to find out the sites suitable for aquaculture in Mymensingh region. A number of criteria were selected for GIS modeling followed by the approach of Kapetsky (1994). The criteria were developed from a range of existing data sources such as, surface and underground water level, availability of feed ingredients and animal wastes, sources of fish fry, market facilities, extension support and communication facilities for aquaculture development. The data were located, collected and compiled from different GOs and NGOs located in the region along with primary data from the field survey wherever necessary and then prepared for computer analyses. Using the database, a series of GIS models were developed in order to ascertain and prioritize the most suitable areas for aquaculture development in the region. Out of total 407,528 ha available lands in the region, the study identified 99,415 ha very suitable and 302,754 ha moderately suitable for aquaculture promotion. Result of the study is indicative to the modeling power of GIS for aquaculture application and could be used to refine the models in future, particularly if it is supported with further detail field data. To get a more concrete and complete model, detailed study should be made available on the availability of mustard oil cake, rice bran, wheat bran, and usable animal and urban wastes that could be used as low-cost feed for sustainable aquaculture.