3 resultados para Type of study
em Aquatic Commons
Study and investigation of the various reactions of Mazandaran Province shoreline against wind waves
Resumo:
Determining of beach states and study of manner sediment transmission in beach profile, involves the evaluating the actions of hydrodynamic forces dominated over the beaches, in this research through determining the beach states by the help of Hanson and short method, different reactions of Mazandaran’s shoreline against wind waves was studied and investigated. For this reason, First, the kind of hydrodynamic forces dominated over the beaches of this province was studied and beaches of the this province was distinguished as wave–dominated beaches, afterwards eight stations are chosen throughout the shoreline and the waves qualities and the sediments regarding to different depth was evaluated in these stations by using software and laboratory actions. In this way the parameter of dimensionless fall velocity each station was calculated and the beach states and their changes according to time was studied. Finally, the gained information is located in the software area of Arc GIS, and the waves dynamics and the way of erosion and accretion was evaluated in each station. In this research by study of air photographs during a thirty years period we found that was no remarkable changes at shoreline in western and central parts and each type of change depends upon the delta, while eastern part of coast at the location of breakwaters in neighbouring of Farahabad Station, accretion features is quiet evident. In the main results of this research, it became obvious that the beach state in the stations Neca, Farahabad, Larim, Naftchal, Mazandaran university, Babolsar, Noor is dissipative and the beach in Nashtarood station is in intermediate (ridge and runnel) state to the extend that in the dissipation beaches from east to west, the degree of dissipation of the beaches is decreased continuously.
Resumo:
This study investigated the pathological changes of heart and bulbus artrius of rainbow trout breeders in several group of ages and density. The aim of study was to consider the process and the intensity of the heart and bulbus arteriosus damages in accordance to gender, age and stocking density of trout in three fish culture center (Zarghezel, Niyak in Haraz Region,Mazandaran and Espiran in Tabriz city environs). In field research, the all records the feed and feeding type, rate of mortality, stocking density of spawners and per spawners fishes, water chemical and physical specification was screened. Stocking density was considered as the most important stressor. 10 fish specimens from 7 weight groups (less than 90g, 90 to 300g, 300 to 500 g, 500 to 1000g, 1 to 3 kg, 3 to 5 kg, over 5 kg), totally 210 specimens were sampled and heart and bulbus arteriosus were taken. Samples were fixed in 10 % formalin and transferred to pathology laboratory of veterinary faculty of Tabriz Azad University. Histopathological slides and H&E staining were prepared from these samples. In total, 47 male and 73 female samples showed cardiovascular injury (29 cases in extensive system, 41 cases in semi intensive system, 50 cases in intensive system). The most important was damages, edema and hyperemia in spongy layer of atrium and ventricle muscles, but degeneration the muscle fibers, moderate edema , minor vascular damage. Hemorrhage as the effect of severs vascular damage, thrombus, sever inflammation, sever degeneration in muscle fiber, necrosis and fibrose were further pathological changed. The results of this study showed that the severity of damage increased by increasing the age (weight) of fishes. This situation was seen in all three culturing system (extensive system, semi intensive system, recirculation system). Histopathological changes is obviously seen in samples over 500g, therefore the damages were found to be important (P<0.05). Pathological effects and its severity in recirculation system was significantly high (P<0.05). Comparison with two other culturing system, histopathological changed in heart and bulbus arterius between male and female was significantly different.
Resumo:
The purpose of this research is to study sedimentation mechanism by mathematical modeling in access channels which are affected by tidal currents. The most important factor for recognizing sedimentation process in every water environment is the flow pattern of that environment. It is noteworthy that the flow pattern is affected by the geometry and the shape of the environment as well as the type of existing affects in area. The area under the study in this thesis is located in Bushehr Gulf and the access channels (inner and outer). The study utilizes the hydrodynamic modeling with unstructured triangular and non-overlapping grids, using the finite volume, From method analysis in two scale sizes: large scale (200 m to 7.5km) and small scale (50m to 7.5km) in two different time durations of 15 days and 3.5 days to obtain the flow patterns. The 2D governing equations used in the model are the Depth-Averaged Shallow Water Equations. Turbulence Modeling is required to calculate the Eddy Viscosity Coefficient using the Smagorinsky Model with coefficient of 0.3. In addition to the flow modeling in two different scales and the use of the data of 3.5 day tidal current modeling have been considered to study the effects of the sediments equilibrium in the area and the channels. This model is capable of covering the area which is being settled and eroded and to identify the effects of tidal current of these processes. The required data of the above mentioned models such as current and sediments data have been obtained by the measurements in Bushehr Gulf and the access channels which was one of the PSO's (Port and Shipping Organization) project-titled, "The Sedimentation Modeling in Bushehr Port" in 1379. Hydrographic data have been obtained from Admiralty maps (2003) and Cartography Organization (1378, 1379). The results of the modeling includes: cross shore currents in northern and north western coasts of Bushehr Gulf during the neap tide and also the same current in northern and north eastern coasts of the Gulf during the spring tide. These currents wash and carry fine particles (silt, clay, and mud) from the coastal bed of which are generally made of mud and clay with some silts. In this regard, the role of sediments in the islands of this area and the islands made of depot of dredged sediments should not be ignored. The result of using 3.5 day modeling is that the cross channels currents leads to settlement places in inner and outer channels in tidal period. In neap tide the current enters the channel from upside bend of the two channels and outer channel. Then it crosses the channel oblique in some places of the outer channel. Also the oblique currents or even almost perpendicular current from up slope of inner channel between No. 15 and No. 18 buoys interact between the parallel currents in the channel and made secondary oblique currents which exit as a down-slope current in the channel and causes deposit of sediments as well as settling the suspended sediments carried by these currents. In addition in outer channel the speed of parallel currents in the bend of the channel which is naturally deeper increases. Therefore, it leads to erosion and suspension of sediments in this area. The speed of suspended sediments carried by this current which is parallel to the channel axis decreases when they pass through the shallower part of the channel where it is in the buoys No.7 and 8 to 5 and 6 are located. Therefore, the suspended sediment settles and because of this process these places will be even shallower. Furthermore, the passing of oblique upstream leads to settlement of the sediments in the up-slope and has an additional effect on the process of decreasing the depth of these locations. On the contrary, in the down-slope channel, as the results of sediments and current modeling indicates the speed of current increases and the currents make the particles of down-slope channel suspended and be carried away. Thus, in a vast area of downstream of both channels, the sediments have settled. At the end of the neap tide, the process along with circulations in this area produces eddies which causes sedimentation in the area. During spring some parts of this active location for sedimentation will enter both channels in a reverse process. The above mentioned processes and the places of sedimentation and erosion in inner and outer channels are validated by the sediments equilibrium modeling. This model will be able to estimate the suspended, bed load and the boundary layer thickness in each point of both channels and in the modeled area.