5 resultados para Twentieth-century literature

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extreme low growth events in giant sequoia ring-width index series coincide with severe droughts in the San Joaquin drainage, on whose eastern flank the sequoia groves stand. Comparison with a network of 102 largely moisture-sensitive tree-ring chronologies from western North America suggests that this relationship has been stable for at least 380 years. The twentieth century is not unusual in the frequency of these events. We expect the growth record will soon be replicated for over 2000 years at two locations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Invertebrates constitute a major link in energy flow culminating into fish production in aquatic ecosystems. In tropical water bodies relatively little research has been done on invertebrate ecology especially their role in fishery production. European scientists through periodic expeditions to Africa in the last quarter of the 20th century carried out the earliest research on zooplankton. Rzoska (1957) listed these early workers including Stuhlmann (1888), Weltner (1897) and Mrazek (1897-1898). Daday (1907), Verestchagin (1915) and Delachaux (1917) undertook further work during the early twentieth century. These earlyworks provide a useful basis for tracking community changes by comparison with modem investigations. Worthington (1931) provided the first quantitative account of the zooplankton of Lake Victoria along with information on diurnal vertical migrations, compared to a temperate lake. The establishment of the East African Freshwater Fisheries Research Organisation (EAFFRO) at Jinja in 1947 enabled investigations on the fisheries, algae, invertebrates and water quality aspects of the lake (EAFFRO Annual Reports 1947-1977) to be regularly carried out. Macdonald (1956) made the first detailed observations on the biology of chaoborids and chironomids (IakefJies) in relation to the feeding of the elephant snout fish, Mormyrus kannume. A detailed study of the biology of the mayfly, Povilla adusta Navas with special reference to the diurnal rhythms of activity was carried out by Hartland-Rowe (1957). The search to unravel the ecological role of aquatic invertebrates in the production dynamics of the lake has taken invertebrate research to greater heights through recent investigations including Okedi (1990), Mavut