21 resultados para Twelfth Century

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Havasu Creek is the second largest tributary of the Colorado River in Grant Canyon. Perennial streamflow in the creek seldom exceeds 2 cubic meters per second, but it supports an important riparian habitat as well as unique travertine pools and waterfalls that attract over 20,000 tourists annually. Havasu Canyon is also home to over 400 members of the Havasu Tribe. Despite a long history of habitation and recreation in Havasu Canyon, streamflow records for Havasu Creek are extremely limited, making flood prediction difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Opening Session (pdf 58 KB) Report of Governing Council Meeting (pdf 244 KB) Report of 2003 interim Governing Council meeting Tenth Anniversary PICES Organization Review Report of the Finance and Administration Committee (pdf 102 KB) 2002 Auditor's report to the Organization Review of PICES Publication Program Reports of Science Board and Committees: Science Board/Governing Council interim meeting (pdf 81 KB) Science Board (pdf 95 KB) Study Group on PICES Capacity Building Biological Oceanography Committee (pdf 65 KB) Advisory Panel on Micronekton sampling gear intercalibration experiment Advisory Panel on Marine birds and mammals Fishery Science Committee (pdf 41 KB) Working Group 16 on Climate change, shifts to fish production, and fisheries management Marine Environmental Quality Committee (pdf 76 KB) Working Group 15 on Ecology of Harmful Algal Blooms (HABs) in the North Pacific Physical Oceanography and Climate Committee (pdf 70 KB) Working Group 17 on Biogeochemical data integration and synthesis Advisory Panel on North Pacific Data Buoy Technical Committee on Data Exchange (pdf 32 KB) Implementation Panel on the CCCC Program (pdf 64 KB) Nemuro Experimental Planning Team (NEXT) BASS Task Team (pdf 35 KB) Advisory Panel on Iron Fertilization Experiment MODEL Task Team (pdf 29 KB) MONITOR Task Team (pdf 30KB) REX Task Team (pdf 25 KB) Documenting Scientific Sessions (pdf 164 KB) List of Participants (pdf 60 KB) List of Acronyms (pdf 21 KB)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 79 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shore whaling along North America’s California and Baja California coasts during 1854–99 was ancillary to the offshore and alongshore American whale fishery, which had begun in the North Pacific in the early 1800’s and was flourishing by the 1840’s. From its inception at Monterey, Calif., in the mid 1850’s, the shore fishery, involving open boats deployed from land to catch and tow whales for processing, eventually spread from Monterey south to San Diego and Baja California and north to Crescent City near the California–Oregon border. It had declined to a relict industry by the 1880’s, although sporadic efforts continued into the early 20th century. The main target species were gray whales, Eschrichtius robustus, and humpback whales, Megaptera novaeangliae, with the valuable North Pacific right whale, Eubalaena japonica, also pursued opportunistically. Catch data are grossly incomplete for most stations; no logbooks were kept for these operations as they were for high-seas whaling voyages. Even when good information is available on catch levels, usually as number of whales landed or quantity of oil produced, it is rarely broken down by species. Therefore, we devised methods for extrapolation, interpolation, pro rationing, correction, and informed judgment to produce time series of catches. The resulting estimates of landings from 1854 to 1899 are 3,150 (SE = 112) gray whales and 1,637 (SE = 62) humpback whales. The numbers landed should be multiplied by 1.2 to account for hunting loss (i.e. whales harpooned or shot but not recovered and processed).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 19th century commercial ship-based fishery for gray whales, Eschrichtius robustus, in the eastern North Pacific began in 1846 and continued until the mid 1870’s in southern areas and the 1880’s in the north. Henderson identified three periods in the southern part of the fishery: Initial, 1846–1854; Bonanza, 1855–1865; and Declining, 1866–1874. The largest catches were made by “lagoon whaling” in or immediately outside the whale population’s main wintering areas in Mexico—Magdalena Bay, Scammon’s Lagoon, and San Ignacio Lagoon. Large catches were also made by “coastal” or “alongshore” whaling where the whalers attacked animals as they migrated along the coast. Gray whales were also hunted to a limited extent on their feeding grounds in the Bering and Chukchi Seas in summer. Using all available sources, we identified 657 visits by whaling vessels to the Mexican whaling grounds during the gray whale breeding and calving seasons between 1846 and 1874. We then estimated the total number of such visits in which the whalers engaged in gray whaling. We also read logbooks from a sample of known visits to estimate catch per visit and the rate at which struck animals were lost. This resulted in an overall estimate of 5,269 gray whales (SE = 223.4) landed by the ship-based fleet (including both American and foreign vessels) in the Mexican whaling grounds from 1846 to 1874. Our “best” estimate of the number of gray whales removed from the eastern North Pacific (i.e. catch plus hunting loss) lies somewhere between 6,124 and 8,021, depending on assumptions about survival of struck-but-lost whales. Our estimates can be compared to those by Henderson (1984), who estimated that 5,542–5,507 gray whales were secured and processed by ship-based whalers between 1846 and 1874; Scammon (1874), who believed the total kill over the same period (of eastern gray whales by all whalers in all areas) did not exceed 10,800; and Best (1987), who estimated the total landed catch of gray whales (eastern and western) by American ship-based whalers at 2,665 or 3,013 (method-dependent) from 1850 to 1879. Our new estimates are not high enough to resolve apparent inconsistencies between the catch history and estimates of historical abundance based on genetic variability. We suggest several lines of further research that may help resolve these inconsistencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine invertebrates of North America received little attention before the arrival of Louis Agassiz in 1846. Agassiz and his students, particularly Addison E. Verrill and Richard Rathbun, and Agassiz's colleague Spencer F. Baird, provided the concept and stimulus for expanded investigations. Baird's U.S. Commission of Fish and Fisheries (1871) provided a principal means, especially through the U.S. Fisheries Steamer Albatross (1882). Rathbun participated in the first and third Albatrossscientific cruises in 1883-84 and published the fist accounts of Albatross parasitic copepods. The first report of Albatross planktonic copepods was published in 1895 by Wilhelm Giesbrecht of the Naples Zoological Station. Other collections were sent to the Norwegian Georg Ossian Sars. The American Charles Branch Wilson eventually added planktonic copepods to his extensive published works on the parasitic copepods from the Albatross. The Albatross copepods from San Francisco Bay were reported upon by Calvin Olin Esterly in 1924. Henry Bryant Bigelow accompanied the last scientific cruise of the Albatross in 1920. Bigelow incorporated the 1920 copepods into his definitive study of the plankton of the Gulf of Maine. The late Otohiko Tanaka, in 1969, published two reviews of Albatross copepods. Albatross copepods will long be worked and reworked. This great ship and her shipmates were mutually inspiring, and they inspire us still.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the twelfth Annual report of the Cumberland River Board on information of its activities and responsibilities on river management in its area between the beginning of April 1962, to the end of March 1963. The report contains 5 main sections on water resources, land drainage, fisheries, pollution, and finally the expenditure and income for the 12 month period. The first area that the report deals with is water resources, which includes information on the completion of gauging stations, abstraction of water and rainfall. The section on land drainage looks at work on improvement schemes, floods and information on maintenance work carried out on rivers including Wampool, Waver, Wiza, Ellen, Cocker, Greta, Marron, Ehen, Keekle, Esk, Bleng, Mite, Annas, Eden, Caldew and Petteril. The fisheries section covers 5 districts of the River Eden, Esk, Derwent, Ellen and South West Cumberland. It includes angling information and a general report for salmon and sea trout, brown trout and freshwater fish. Fish disease and fish hatchery are also covered as well as Byelaws and fisheries protection. The fourth section on pollution covers water quality and information on sewage and trade effluents. The River Boards preceded the Environment Agency which came into existence in 1996.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At decadal period (10-20 years), dynamic linkage was evident between atmospheric low pressure systems over the North Pacific Ocean and circulation in a Pacific Northwest fjord (Puget Sound). As the Aleutian low pressure center shifts, storms arriving from the North Pacific Ocean deposit varying amounts of precipitation in the mountains draining into the estuarine system; in turn, the fluctuating addition of fresh water changes the density distribution near the fjord basin entrance sill, thereby constraining the fjord's vertical velocity structure. This linkage was examined using time series of 21 environmental parameters from 1899 to 1987. Covariation in the time series was evident because of the strong decadal cycles compared with long-term averages, interannual variability, and seasonal cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale. ... Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series analysis methods have traditionally helped in identifying the role of various forcing mechanisms in influencing climate change. A challenge to understanding decadal and century-scale climate change has been that the linkages between climate changes and potential forcing mechanisms such as solar variability are often uncertain. However, most studies have focused on the role of climate forcing and climate response within a strictly linear framework. Nonlinear time series analysis procedures provide the opportunity to analyze the role of climate forcing and climate responses between different time scales of climate change. An example is provided by the possible nonlinear response of paleo-ENSO-scale climate changes as identified from coral records to forcing by the solar cycle at longer time scales.