10 resultados para Turbulence

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesize that the impact of PCB desorption from resuspended sediments depends upon the intensity of the resuspension (which scales to bottom stress in the absence of organisms), the rate at which each congener desorbs (which depends on the size and hydrophobicity of the chemical, the relative amount of 'labile' and 'resistant' forms, and the size distribution of the suspended particles), and the residence time of the particles in the water column (which depends on the time-variable water column turbulence regime and the particle settling velocities). In order to accurately quantify the impact of PCB desorption from Hudson River sediments, we are conducting experiments that realistically mimic bottom shear stress and water column turbulence and rapidly measure PCB congener release. The objectives of this study are to measure the kinetics of PCB congener desorption from Hudson River sediments under realistic bottom shear and water column turbulence conditions and to quantify the impact of shear stress and contaminant aging on PCB desorption kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Table of Contents [pdf, 0.01 Mb] Preface [pdf, 0.01 Mb] Masaaki Aota Long-term tendencies of sea ice concentration and air temperature in the Okhotsk Sea coast of Hokkaido [pdf, 0.05 Mb] Hajime Ito & Miki Yoshioka Geography of the seasonally ice covered seas [pdf, 0.5 Mb] George V. Shevchenko & Victor F. Putov On wind and tide induced sea-ice drift on the northeastern shelf of Sakhalin Island (analysis of radar data) [pdf, 0.96 Mb] Boris S. Dyakov, A.A. Nikitin, L. S. Muktepavel & T.A. Shatilina Variability of the Japan and Okhotsk Seas ice cover depending on geopotential field H500 over the Far-Eastern region [pdf, 0.10 Mb] Aleksandr G. Petrov & Nikolay A. Rykov Intermediate cold layer and ice cover in the Sea of Okhotsk [pdf, 0.37 Mb] Vladimir Ponomarev, Olga Trusenkova, Elena Ustinova & Dmitry Kaplunenko Interannual variations of oceanographic and meteorological characteristics in the Sea of Okhotsk [pdf, 0.16 Mb] George V. Shevchenko & Akie Kato Seasonal and interannual changes of atmospheric pressure, air and water temperature in the area of the Kuril Ridge [pdf, 0.13 Mb] George V. Shevchenko & Vladimir Yu. Saveliev Spatial variability of the wind field in the area of the Kuril Islands [pdf, 0.15 Mb] Alexander L. Figurkin & Igor A. Zhigalov Seasonal variability and specifity of the oceanological conditions in the northern Okhotsk Sea in 1997 [pdf, 1.04 Mb] Igor A. Zhabin Ventilation of the upper portion of the intermediate water in the Okhotsk Sea [pdf, 0.80 Mb] Vladimir A. Luchin & Alexander L. Figurkin Oceanographic conditions over the Kashevarov Bank [pdf, 0.61 Mb] Toshiyuki Awaji, Tomohiro Nakamura, Takaki Hatayama, Kazunori Akimoto & Takatoshi Takizawa Tidal exchange through the Kuril Straits [pdf, 2.01 Mb] Tomohiro Nakamura, Toshiyuki Awaji, Takaki Hatayama, Kazunori Akimoto, Takatoshi Takizawa & Masao Fukasawa Vertical mixing induced by tidally generated internal waves in the Kuril Straits [pdf, 0.83 Mb] Katsuro Katsumata & Ichiro Yasuda Water exchange between the Okhotsk Sea and the North Pacific Ocean estimated by simple models [pdf, 0.97 Mb] Konstantin A. Rogachev Oyashio west path culmination as the consequence of a rapid thermohaline transition in the Pacific Subarctic [pdf, 0.22 Mb] Yasuhiro Kawasaki On the year-to-year change in subarctic water characteristics around the Kuril Islands [pdf, 0.39 Mb] Alexander L. Figurkin & Evgeniy E. Ovsyannikov Influence of oceanological conditions of the West Kamchatka shelf waters on spawning grounds and on pollock egg distribution [pdf, 0.97 Mb] Igor E. Kochergin & Alexander A. Bogdanovsky Transport and turbulence characteristics for the northeastern Sakhalin shelf conditions [pdf, 0.08 Mb] Igor E. Kochergin, Alexander A. Bogdanovsky, Valentina D. Budaeva, Vyacheslav G. Makarov, Vasily F. Mishukov, S.N. Ovsienko, Victor F. Putov, L.A. Reitsema, J.W. Sciallabba, O.O. Sergucheva & P.V. Yarosh Modeling of oil spills for the shelf conditions of northeastern Sakhalin [pdf, 0.32 Mb] Valentina D. Budaeva & Vyacheslav G. Makarov A peculiar water regime of currents in the area of eastern Sakhalin shelf [pdf, 0.66 Mb] Nikolay A. Rykov The oceanographic databases on the Sakhalin shelf [pdf, 0.27 Mb] Akifumi Nakata, Iori Tanaka, Hiroki Yagi, Tomomi Watanabe, Gennady A. Kantakov & Andrew D. Samatov Formation of high-density water (over 26.8 sigma-t) near the La Perouse Strait (the Soya Strait) [pdf, 0.09 Mb] Minoru Odamaki & Kouji Iwamoto Currents and tidal observations by Hydrographic Department of Maritime Safety Agency, off the Okhotsk coast of Hokkaido [pdf, 0.16 Mb] Yasushi Fukamachi, Genta Mizuta, Kay I. Ohshima, Motoyo Itoh, Masaaki Wakatsuchi & Masaaki Aota Mooring measurements off Shiretoko Peninsula, Hokkaido in 1997-1998 [pdf, 0.19 Mb] Mikhail A. Danchenkov, David Aubrey & Stephen C. Riser Oceanographic features of the La Perouse Strait [pdf, 0.91 Mb] Iori Tanaka & Akifumi Nakata Results of direct current measurements in the La Perouse Strait (the Soya Strait), 1995-1998 [pdf, 0.06 Mb] Gennady A. Kantakov & George V. Shevchenko In situ observations of Tsushima and West-Sakhalin currents near La Perouse (Soya) Strait [pdf, 0.79 Mb] Irina Y. Bragina Geographical and biological characteristics of the net zooplankton in the southwestern part of the Sea of Okhotsk during 1987-1996 [pdf, 0.27 Mb] List of corresponding authors [pdf, 0.01 Mb] (Document pdf contains 193 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a slow flow, on a smooth uniform substratum, a limited bed allows the existence of currents slow enough for benthic invertebrates. These conditions rarely occur naturally. The investigations carried out in this work aimed, on an intermediary scale, to define the influence of irregularities in the substratum on flow near the bottom. The substrata used were made of glass marbles. The investigations were carried out in a transparent channel of 70 cm in length and a rectangular section 10 x 5 cm. The data was analysed to study the general evolution of flow in terms of average speeds and the appearance of the turbulence near the bottom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cow Green is a new reservoir situated in Pennine moorland. It has an area of 312 ha, a capacity of 40 . 9 x 10 SUP-6 m SUP-3 and a maximum depth of 22 . 8 m. The function of the reservoir is to regulate flow in the River Tees to provide industrial Teesside with sufficient water during the dry spells. Invertebrate studies were carried out in the Tees to monitor changes resulting from the construction of the reservoir both in the flooded basin and below the dam. The overall effect of the reservoir on the Tees has been to increase the numbers and biomass of certain taxa, but generally not at the expense of previous fauna. Some of the positive effects, ie. increase in number and biomass, and maintenance of faunal diversity, may in part be attributable to the presence of the rapids and waterfall. Turbulence resulting from this rapid flow over heterogeneous bottom is sufficient to prevent clogging of interstitial spaces by silt and to maintain the variety of ecological niches necessary for a diverse fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loxodes faces special problems in living close to the oxic-anoxic boundary. In tightly-stratified ponds like Priest Pot its optimum environment may be quite narrow and it can be displaced by the slightest turbulence. Loxodes cannot sense an O sub(2) gradient directly but its ability to perceive gravity allows it to make relatively long vertical migrations. It is also sensitive to light and oxygen and it uses these environmental cues to modulate the parameters of its random motility: in the dark, it aggregates at a low O sub(2) tension and in bright light it aggregates in anoxic water. The oxic-anoxic boundary is also a zone where O sub(2) may be a scarce and transient resource, but Loxodes) can switch to nitrate respiration and exploit the pool of nitrate that often exists close to the base of the oxycline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To develop an understanding of stock structure and recruitment variation in Bering Sea pollock, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) funded an 7-year (1991-1997), interdisciplinary project named Bering Sea Fisheries-Oceanography Coordinated Investigations (BS FOCI; Schumacher and Kendall, 1995) for which NOAA and academic researchers were selected through a competitive process (Macklin, this report). The project goals, based on recommendations from an international symposium on pollock (Aron and Balsiger, 1989) were to (1) determine stock structure in the Bering Sea and its potential relationship to physical oceanography, and (2) examine recruitment processes in the eastern Bering Sea. Both of these have direct implication to management. An integrated set of field, laboratory, and modeling studies were established to accomplish these goals. To address the first goal, project objectives were to establish details of oceanic circulation relevant to larval dispersal and separation of stocks, and determine if unique chemical or genetic indicators existed for different stocks. The recruitment component of BS FOCI, addressing the second goal, focused on understanding causes of variable mortality of pollock larvae in the different habitats of the eastern Bering Sea. The emphasis of recruitment studies was to determine the dominant physical oceanographic features (turbulence, temperature, and transport) that could influence survival of pollock larvae, and investigate factors controlling food production for the larvae. A later component contrasted juvenile habitat in three hydrographic regimes around the Pribilof Islands (Brodeur, this report).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We used the diet of a seabird, the common murre (Uria aalge), nesting on Southeast Farallon Island and feeding in the Gulf of the Farallones, California, as an index to abundance of juvenile rockfish, then related fish abundance to indices of turbulence and upwelling over an 18-year period, 1973-1990. Strong, persistent upwelling or downwelling led to reduced availability of fish in the study area, in contrast to great abundance when upwelling was mild or pulsed. ... On the basis of our study, one effect might be that fishes thought strong enough to resist Ekman transport could be transported out of normal areas of recruitment.