2 resultados para Transports.
em Aquatic Commons
Resumo:
Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
Resumo:
In order to investigate the abundanceand strength of most recent year classes of cod,haddock, whiting, Norway pout, herring, sprat, and mackerel seven researchvessels of ICES member states carried out a bottom trawl survey in the North Sea in January/February 1996. Germany took part in these investigations by R.V. "Walther Herwig III" from January 19 to February 9 covering 62 out of 332 international stations. No substantial positive or negative results concerning the incoming year classes were obtained. As expected, the hydrographc situation of the area under investigation was strongly influenced by the actual weather: On the one hand, the continuous cooling of the surface layer by cold air caused vertical mixing down into the bottom layer in larger areas, and led to decreasing water temperatures which were below the long term values in nearly all the North Sea at the end of the investigation period. On the other hand, the continuous southern to eastern winds over the North Sea led to horizontal water mass transports renewing vertical salinity differences and inducing regionally positive as weH as negative salinity anomalies of up to 0.6· 10-3. ,